高橋 進

小作 一仁

トルクコントロールを受ける上顎前歯部の有限要素解析

日大生産工(院) 〇一色 祥智 日大生産工 西 恭一 日大生産工 日大・歯学 中嶋 昭 日大・歯学

1 緒言

近年、歯科矯正学において歯周組織への影響 を解明するため、3D modelを用いた様々な有 限要素解析(FEA)¹⁾が行われている.本報告で はトルクを付与した矯正用ワイヤ(以下ワイ ヤ)による上顎側切歯および両隣在歯への影響 を解明するため、3DCAD、CAE統合ソフトウ ェアを用いたモデル作成およびFEAを行い、 境界条件について検討したので報告する.

2 解析対象

歯冠部はワイヤ形状に沿って並ぶが,側切歯 の歯根が10[deg]舌側転位した状態の歯列にト ルクを付加して矯正治療するトルクコントロ ールを解析対象とする.ワイヤの断面形状は四 辺形(0.018×0.025[in])であり,材質はSUS304 である.

3 FEAモデル

FEA モデルは、ニッシン社製頭蓋模型の CT 画像を基に 3DCAD により作成する (Fig.1-a).実際は、ワイヤの幅と同寸法のブ ラケットのスロットにワイヤを挿入してトル クを伝達している.本解析手法ではワイヤを モデル化せず、トルクを直接ブラケットに付 加して解析を行うため、ブラケットのスロッ ト部はトルクを設定し易くするために Fig.1-b)に示すよう円筒形に近似して作成す る.また、FEA モデル簡略化のため、歯根膜 以外は剛体として扱うこととし、歯根膜の材 料定数を Table1 に示す.歯根膜は弾性体と し、厚さは 0.2[mm]とする.なお、要素数と 節点数はそれぞれ 198,230 と 386,320 である.

4 境界条件に関する検討

4. 1境界条件TYPE A

境界条件TYPE A (Fig.2)では歯根膜の歯槽 骨側表面を固定し、歯が歯槽骨に植立した状態 を再現する.トルクゲージを用いて実測した, Table1 各部位の材料定数

部位	ヤング率[MPa]	ポアソン比
歯根膜	0.667	0.49
ワイヤ	190,000	0.29

Table2 各歯のブラケットに付加するトルク

トルク[Nm×10 ⁻⁴]			
中切歯	側切歯	犬歯	
-84.75	169.5	-84.75	

ワイヤに付加したトルク(Table2)とねじり角

度(略)の関係から計算したトルク2)をブラケットのスロット部に付加する.

Finite Element Analysis of Upper Front Teeth Under Torque Control Yoshitomo ISSHIKI, Yasukazu NISHI, Susumu TAKAHASHI, Akira NAKAJIMA and Kazuhito KOSAKU

4.2 境界条件TYPE Aの問題点

境界条件TYPE Aを用いたFEAにおける歯 根膜の最大主応力結果をFig.3に示す. 側切歯 の唇側歯頸部および舌側根尖部に引張応力,舌 側歯頸部および唇側根尖部に圧縮応力がみら れ,中切歯および犬歯の唇側歯頸部および舌側 根尖部に圧縮応力,舌側歯頸部および唇側根尖 部に引張応力がみられる.以上のことから各歯 はブラケットスロット部を中心に回転してお らず,歯根の中心を軸に回転した結果となって おり,ワイヤがブラケットスロット部に装着さ れた状態を再現できていないと考えられる.

4. 3 境界条件TYPE B

境界条件TYPE Aではワイヤからのトルク のみを設定していたため歯冠部が自由に動い ており,ブラケットのスロット部を中心に歯が 回転していない問題が浮上している.そこでワ イヤにより歯冠部の動きが制限されている条 件を追加するため,スロットのエッジを固定し た境界条件TYPE B (Fig.4)によりFEAを行う. SOLIDWORKSではモデルのエッジ部を拘束 することによりモデルの並進運動は抑制され, 加えてブラケットのスロット内面にトルクを 付加することにより,ブラケットを中心とした 回転が可能となる.

4. 4 結果および考察

境界条件TYPE BによりFEAを行った歯根 膜の最大主応力結果をFig.5に示す. 側切歯の 唇側側根尖部から歯頸部にかけて圧縮応力,舌 側根尖部から歯頸部にかけて引張応力,中切歯 および犬歯の唇側根尖部から歯頸部にかけて も引張応力,舌側根尖部から歯頸部にかけては 圧縮応力がみられる.以上のことから各歯はブ ラケットスロット部を中心に回転しており,臨 床と比較してもワイヤが装着された状態を再 現できていると言える.

5 結言

- 1) ブラケットにトルクに加え,新たに歯冠 部の動きを制限する境界条件を設定す ることで実現象に近いFEAを行うこと が可能になった.
- 2) 今後の課題として、歯列の湾曲を考慮した矯正力を設定することにより実現象に近いFEAが可能になると考えられる.

へ函 側切園 中切園 中切園 側切園 八座
 a)唇側
 b)舌側
 Fig.5 境界条件TYPE Bを用いたFEA
 による最大主応力分布

「参考文献」

1)多部田敦己,有限要素解析による歯科矯 正用アーチワイヤの定量設計手法に関する 研究,日本大学生産工学研究科,修士論文 (2017), p.26.

2) Miyuki Hirai, *et al.*: Measurements of the torque moment in various archwire
bracket - ligation combinations,
European Journal of Orthodontics 34 (2012), p.377.