手書き実体配線図の自動評価に関する基礎的研究

日大生産工〇黒岩孝日大生産工矢澤翔大日大生産工新妻清純

1. はじめに

電気電子系学科の実習科目、特に学生実 験では、通常(a)前試問(b)実験装置の結線 (c) 測定 (d) 後試問 という手順で進められ ていくが、主に(a)や(b)の指導に多くの手 間がかかり、担当教員の負担も大きくなる。 例えば実験装置の結線においては、実験を 行う前に手書きの実体配線図を書かせ、あ らかじめ理解度を確認してから実験を行わ せることが良く行われるが、正解となる配 線の仕方が複数通り存在するなどの理由で、 受講者数が多い場合は、評価に時間がかか るという問題点がある。著者らは、コミュニ ケーションロボットで学生実験の支援が可 能か、被験者に対して模擬的な前試問を行 い、その主観的な評価を調べることで有効 性を検討したが「11、結線の指導における支援 については、まだ検討を行っていない。一 方、最近のコミュニケーションロボットは カメラやネットワーク機能を標準で備えて おり、CPUの演算性能も強化されているの で、例えばROSとOpenCVとを連携させた 高度な画像処理でさえも、比較的容易に対 応出来る[2]。そこで本研究では、画像処理の 手法を用いることで、手書き実体配線図を 自動的に評価できるかどうか検討を行う。 具体的には、簡単な回路図を設問として与 えたとき、回答された実体配線図の正否を 評価するアルゴリズムの構築が可能である か検討を行う。

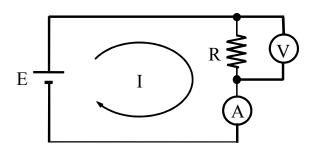


図1 回路図の例

2. アルゴリズムの検討

図1に、実体配線図の設問として用いる、 中抵抗を測定する実験の回路図を示す。ま た、図2はその解答例である。同図中の点線 は結線を表しており、実習時には装置のイ ラストに対してフリーハンドで線を描かせ、 以下の点に注意しながら結線が正しいかど うかを判断する。

- (1)電源の極性: ± どちらの端子が GND 端子に接続されているか
- (2) 測定装置の接続方法:電圧計が並列に、電流計が直列に接続されているか
- (3) 閉回路の妥当性: 短絡や未接続の素子がないかどうか

ここで低学年の実験では、主に直流回路を用いて素子を計測するという回路が多いので、端子を点・結線を辺として考えると、大抵の回路図は最大次数2の単純グラフ^[3]で表すことが出来る。よって、各端子間における相互接続の状況さえわかれば、結線が正しいかどうかを判断できる。図2に示した解

Fundamental study on the automatic evaluation of the freehand sketch of electrical wiring

Takashi KUROIWA, Syota YAZAWA and Kiyozumi NIIZUMA

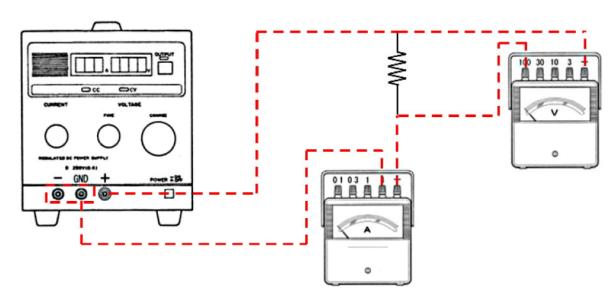


図2 実体配線図の回答例

答例の様に、結線が全て直線で描かれてい る場合は、Hough変換^[4]等で結線を抽出し、 計算幾何学の手法で線分の交差判定[5]を行う ことで接点の相互接続状況を把握できると 思われるが、結線が任意の曲線で描かれて いる場合には、かなり難しいと予想される。 その場合、例えば図3に示すように、接点を 中心とする様な方形領域を考え、接点近傍 における8方向の領域 Ⅰ~Ⅷに対して、どの 領域に結線が含まれているのかを検出して いく。すなわち、全ての接点に対して結線の 探索領域を拡大、あるいは拡張していき、隣 接する二つの接点について結線の存在領域 が重なるかどうかを調べることで、接点の 相互接続状況を把握することが出来ると思 われる。

3. まとめ

画像処理の手法を用いることで、手書き 実体配線図を自動的に評価するアルゴリズムを構築できるか否か、簡単な回路図について検討を行った。今後は、実際に接点の相互接続を把握できるか、実験による検討を行う予定である。

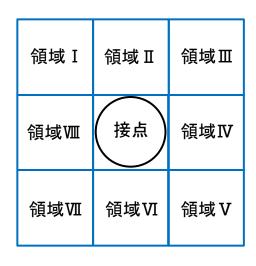


図3 結線の方向の予測

参考文献

- [1] 黒岩,矢澤,新妻:コミュニケーションロボットを用いた実習科目の支援に関する研究, 2018年電気学会全国大会,1-011,p.17(2018)
- [2] 小倉: ROS ではじめるロボットプログラミング, 工学社(2015)
- [3] R.J.Wilson/ 西関他訳: グラフ理論入門, 近代科学社 (2001)
- [4] 長谷川: 画像工学, コロナ社 (2007)
- [5] M. De Berg/ 浅野訳: コンピュータ・ジオメトリ,近代科学社(2010)