製塩苦汁から KCl を分離・回収する条件の検討

1. 諸言

日本の製塩プロセスは、海水(NaCl 3.5%)をろ過した後、イオン交換膜電気透 析法により、濃縮海水(NaCl 濃度約 20%)であ るかん水を生成し、水分を蒸発させることで NaClを製造している。かん水から NaClを分 離する際に排出される排水が苦汁であり、K、 Mg およびCa といった有用資源が多く含まれ ていることから、苦汁からの効率的な資源の 回収が求められている。

有用資源の回収方法として,苦汁を冷却な どの温度操作や化学反応を利用することで工 業的に有用な資源を結晶として取り出してい る。しかし,低濃度の各種イオンを含む苦汁 の活用には,正確な溶液物性が必要であり, 有効な資源回収プロセスの構築にむけては, 目的物質の反応場における溶解度 ¹⁰の把握が 鍵となる。苦汁中に含まれている有用資源の 中でも,肥料や食品添加物として用いられる KCIは,冷却晶析で分離・回収されているが, 収率 30 %であることから更なる収率を向上 が必要となる。

本研究は,海水中に含まれている有用資源 の分離・回収プロセスにおいて,晶析操作の 運転条件決定に不可欠な過溶解度測定を目的 とするものである。本研究では,実機に基づ いたラボスケールの冷却晶析装置を作製し, KCl および苦汁の過溶解度の測定を行い,撹 拌速度²⁾,冷却速度³などの条件が過溶解度 に及ぼす影響についての検討を行った。

2. 実験方法および測定方法

KCIの水に対する過溶解度測定は、図1に 示すパイレックスガラス製小型測定装置を用 いて冷却晶析により行った。本装置は、取り 外し可能な内容積約 60 cm³の平衡セル(a)と 日大生産工(院) 〇中安 亮太 日大生産工 佐藤 敏幸,日秋 俊彦

外側が真空ジャケット(b)になった二重管式 冷媒ジャケット(c)で構成されている。これは, 平衡セルの保温性を向上させ,温度の制御を 容易にする効果と,試料溶液が過飽和になり, 結晶が析出する様子を目視で確認できる構造 とした。冷却速度,撹拌時間および撹拌速度 の条件を変更して,諸条件が過溶解度にどの ような影響を与えるか検討した。

図1 過溶解度測定装置の概略図

実験は、まずセル内に試料を約 20 ml を充 填し、恒温槽を用いて、343.15 K~293.15 K の範囲で冷却ジャケット内に加熱または冷却 した熱媒を送液し、水槽とジャケット内を循 環させることでセル内を平衡状態とした。冷 却速度は、-1.0~0.25 K/min である。測定時に は、試料溶液を十分に撹拌するためにマグネ ティックスターラを用いて撹拌し、セル内の 平衡温度はデータ収集スイッチユニットに接 続した白金測温抵抗体により±0.01 K の精度 で測定後、デジタル値としてパーソナルコン ピュータに約 1 秒毎に記録した。撹拌速度、 冷却速度及び撹拌時間の条件を操作因子とし て実験を行った。

Study on conditions to separate and recovery of KCl from salt bittern

Ryota NAKAYASU, Toshiyuki SATO, and Toshihiko HIAKI

-451 -

3. 実験結果と考察

3.1 過溶解度測定

まず,図1に示すガラス製小型測定装を用い て行った過溶解度測定の結果を図2に示す。 KClの水に対する過溶解度曲線と溶解度 4曲 線を示している。過溶解度は、溶媒が過飽和 の状態で核発生し結晶が生成し始める濃度で ある。本実験の過溶解度は、セル内で結晶の 生成し始めたところを目視で確認し、結晶の 析出温度から求めた。

次に、図3には過溶解度測定において撹拌 速度,撹拌時間,冷却速度の条件を変更して 行い得られた過溶解度曲線について示す。グ ラフがほぼ同様の形になったが,撹拌時間が 異なるグラフを比較すると大きな差がなく与 える影響は小さいと考えられる。一方で冷却 速度や撹拌速度が変化すると,グラフの形状 が変わることから,それらの影響が大きいこ とが確認された。

図3各条件における過溶解度 こ ラボスケール状帯による測定

3.2 ラボスケール装置による測定

以上の結果から、より実際のプロセスに近い状態で行うために、測定装置を実機に基いたラボスケールの測定装置に変更し、原料に苦汁を用いて実験を行った。図4には、内容積が1000 mlの測定装置を示す。測定は試料を500 mlとし先の実験方法と同様に行い、マグネティックスターラの代わりに撹拌翼を使用した。

図4 実機を基にした測定装置

図5には苦汁を原料として,撹拌速度,冷 却速度を変更して冷却晶析によって分離を行 い得られた結晶のXRDの結果を示した。

得られたピークより結晶中には、目的成分 である KCI,と塩である NaCl が含まれている ことが確認された。撹拌速度、冷却速度の条 件を変更したが、得られる結晶組成は、変化 しないことが確認された。

今後は、原子発光などを用いることで、冷却晶析後の各資源の含有量を分析し、物質収 支を調査して、冷却晶析における KCl の分離・回収における最適条件を検討する。

謝辞

本研究は、公益社団法人ソルト・サイエンス 財団の助成により遂行できました。ここに感 謝いたします。

参考文献

1). 塩事業センター, 海水と製塩データブック, 株式会社トッパンプロスプリント, p17, 2006.

2) Shanfeng *et al*, CRYSTAL GROWTH and DESIGN, vol.10, p.2541–2547, 2010.

3) 北村光孝, 多形現象と制御技術-晶析と多 形の基礎から多形制御の実際まで-, 株式会社 エヌ・ティー・エス, 2018.

4) Perry's Chemical Engineers'Handbook, 8th, 2008.