HfO2を用いた非晶質酸化物半導体の高性能化の研究

1. まえがき

省電力化・高精細化を求め、非晶質酸化物 半導体が注目されている。しかし酸化物 TFT は、NBIS ストレスに対しては伝導帯下~1.5 eV の欠陥準位が顕著となり、 V_T シフトと相 関のあることがこれまでの検討で知られてい る。

本研究では、絶縁膜材料を従来の比誘電率 $\epsilon = 3.9 \text{ o SiO}_2$ から比誘電率が $\epsilon \sim 15 \text{ o}$ ハフ ニウムオキサイド(以降 HfO₂)に変更すること を検討している。ガラス基板で作製した際に SiO₂は、MIS 界面との接合が良い。そのた め、MIS 界面の向上が見込める。また、絶縁 膜容量を増加させることによりしきい電圧 V_T は減少する。ここで、しきい電圧 V_Tは(1)式 で、絶縁膜容量Coは(2)式で表すことができる。

$$V_T = \frac{\sqrt{2\varepsilon_s q N_A(2\varphi_B)}}{c_0} + 2\varphi_B \cdot \cdot \cdot (1)$$

 $C_0 = \frac{\epsilon S}{a} \cdot \cdot \cdot (2)$ よって、d の絶縁膜の膜厚を薄くし、比誘電率を大きくすると、絶縁膜容量 Co を大きくすることができ、しきい電圧 VTの減少につながる。また、HfO₂は SiO₂の約4倍の比誘電率を有し、絶縁膜容量 Co を4倍に大きくすることができると考えられる。よって、HfO₂が MIS 界面に対する信頼性にどう影響するのかを目的とする。

2. 実験方法および測定方法

2-1 HfO2の特性評価

HfO₂の成膜方法は、RF マグネトロンスパッ タリング法を用いた。図1に素子構造、表1に 成膜条件を示す。 日大生産工(院) 〇鈴木 貴祐

日大生産工 清水 耕作 試料作成後、空気中、350 ℃で1時間アニー ル処理を行った。その後、HfO2のソース/ドレ イン間での IV 特性を行い、特性評価を行った。

表	1	成膜条件
	-	

Target	HfO2	a-ITZO	a-SiO2	
Cas Assumate [seam]	Ar	100	100	100
Gas now rate [sccm]	O ₂	0.0	1.0	1.0
Power [W]	200	50	150	
Growth Pressure	0.5	1.5	1.5	
substrate positio	20, 50, 80	50	50	
Temperature	25	250	25	
Growth time [r	16	14	14	
Thickness [n	100	150	20	
annealed [°C	350	350	350	

図1TFT 素子構造

2-2 RF マグネトロンスパッタ法

図 2 RF マグネトロンスパッタ決
図 2 のスパッタリング法は成膜技術の一つ
である。スパッタはイオン化した気体を電位差
によって加速し、堆積したいターゲット材料に

Fabrication of high Quality Amorphous Oxide Semiconductors Transistor using HfO₂ Takahiro SUZUKI, Kousaku SHIMIZU

衝突させ原子または分子がはじき出す。この現 象を利用して、ターゲットとして供給される元 素をガラスや Si などの基板に堆積して薄膜を 形成する方式がスパッタリングである。

3. 実験結果

3-1 HfO₂ 基板間距離依存性による絶縁破壊 電界の評価

50%、80%の絶縁破壊電界を示す。基板間距 離 20%、50%、80%の抵抗率 ρ は、それぞ れ、20%は、 ρ =8.436×10¹² Ω ·cm, 50%は、 ρ =2.210×10¹³ Ω ·cm, 80%は、 ρ =4.534× 10¹² Ω ·cmとなった。よって、基板間距離を 広くすると抵抗率は、大きくなることが分か った。また耐圧は、20%は、0.442 MV/cm, 50%は、0.455 MV/cm, 80%は、0.471 MV/cm となった。よって、基板間距離を広くする と、絶縁破壊電界は高くなる傾向のあること が分かった。

5. まとめ

本研究で、基板間距離における絶縁破壊電 界の変化を確認した。基板間距離を広くする と、抵抗率は、大きくなり、絶縁破壊電界 は、大きくなることが確認できた。これは、 基板間距離を広くすることでプラズマダメー ジによる MIS 界面の欠陥が少なくなり、絶縁 性が上がったと考えられる。また、絶縁破壊 電界が低いため、今後は、基板台の加熱によ る成膜、投入電力を下げる、圧力変化などを し、絶縁性を高めることが求められると考え ている。