2 - 51

パーシャルスキャン設計とコントローラ拡大を用いた テスト容易化機能的 k 時間展開モデルに基づくテスト容易化設計法

	日大生産工(院)	〇石山	悠太	日大生産工	細川	利典
--	----------	-----	----	-------	----	----

1. はじめに

近年,半導体集積技術の発展に伴い,設計される大規 模集積回路(Large Scale Integrated circuits:LSI)の大規模 化,複雑化が急速に進展している[1]. それに伴い,LSI のテスト生成が重要な課題となっている.高い故障検出 効率を達成するためには,何らかのテスト容易化設計 (Design for Testability:DFT)が必要である.

現在,スキャン設計[1]が LSI の DFT 手法として普及 している.特に回路中のすべてのフリップフロップ (Flip-Flop:FF)をスキャン FF で構成する.フルスキャ ン設計では,組合せ回路に対するテスト生成技術を適用 することが可能となるので,高い故障検出効率を達成す ることが可能となる.しかしながら,回路面積の増大や, 消費電力の増加などのハードウェアオーバヘッドが増 大するという問題点がある.

また、フルスキャン設計の問題点を解決するために、 非スキャンテストに基づいたレジスタ転送レベル (Register Transfer Level: RTL)における DFT 手法が提案 されている[2]. これらの DFT 手法はコントローラとデ ータパスから構成される回路を対象にし,そのデータパ スのみに着目した手法である. そのため, データパスに 対する高い故障検出効率を実現するためには、データパ スとコントローラがテスト時に分離されていることが 前提となる. テスト時に RTL データパスとコントロー ラを分離するためには付加回路が必要である. 文献[4] ではデータパスのテスト容易な構造に着目したテスト 容易化機能的 k 時間展開モデルを用いたテスト生成手 法が提案されている. 文献[4]の手法では、データパス のテスト容易な構造に基づいてテスト生成を行うため のテスト容易化機能的 k 時間展開モデルを生成し, その 生成されたモデルの動作を実現可能にするためにコン トローラを拡大する. テスト生成時は, 拡大したコント ローラの機能に着目し、生成したテスト容易化機能的 k 時間展開モデルの動作を実現するような制御信号・状態 信号系列を制約として与える. テスト容易化機能的 k 時 間展開モデルを用いてテスト生成することにより. 演算 器の故障のテスト生成に関しては高速に高い故障検出 効率を達成することができている.しかしながら、文献 [4]の手法は、データパス内の演算器のテスト生成のみ を対象とした DFT 手法であり、さらにテスト容易化機 能的 k 時間展開モデルを使用するために, 時系列値を制 約値として与えることのできる専用の制約付テスト生 成を必要とする.

本論文では、演算器だけではなく回路全体のテスト容 易性を考慮し、回路構造に基づいた一般のテスト生成を 用いて高い故障検出効率を達成するために、回路中のす べてのハードウェア要素(演算器,マルチプレクサ,レ ジスタ,コントローラ)に対応するテスト容易化 k時間 展開モデルの生成とその動作を制御可能にするための 無効テスト状態[2]の状態遷移を設計するというコント ローラ拡大に基づく DFT 手法を提案する.また,本 DFT 手法は、コントローラ中の状態レジスタとデータパスか らコントローラへの状態信号に接続している状態信号 レジスタと制御信号線に付加する EXOR ツリーの出力 レジスタをスキャン設計したパーシャルスキャン設計 を前提とする.コントローラをスキャン設計することに より,無効テスト状態を含む任意の状態にシフト動作で 遷移することが可能で、任意の状態から k サイクル間状 態遷移を実行することにより,各ハードウェア要素に対 するテスト容易化機能的 k 時間展開モデルが回路構造 に基づくテスト生成において実現可能であると考えら れる.パーシャルスキャン設計とコントローラ拡大によ り、フルスキャン設計よりも少ないハードウェアオーバ ヘッドで同等の故障検出効率を達成することを目指す.

日大生産工

山崎

紘史

2. テスト容易化設計手法

2-1 パーシャルスキャン設計

パーシャルスキャン設計とは、回路中の特定のレジス タのみをスキャンレジスタで設計するテスト容易化設 計手法である.パーシャルスキャン設計の利点として、 フルスキャン設計と比較し、ハードウェアオーバヘッド とテスト実行時間を削減できることが挙げられる.しか しながら、順序回路のテスト生成を必要とするため、フ ルスキャン設計と比較して、故障検出効率の低下が問題 となる.

本手法では、コントローラ中の状態レジスタと状態信 号に接続されているデータパス中の状態信号レジスタ と制御信号線に付加する EXOR ツリーの出力レジスタ のみをスキャン設計する.コントローラ中の状態レジス タをスキャン設計する理由としては、コントローラ中の レジスタ数はデータパスのレジスタ数に比べて非常に 小さく、かつコントローラのテスト容易性の向上が回路 全体のテスト容易性の向上に大きな影響を与えるため である.これは、スキャンテスト時のシフト動作で任意 の状態に遷移が可能となるからである.状態信号レジスタ に接続されているハードウェア要素とコントローラの テスト容易性の向上のためである.状態信号レジスタ に接続されているハードウェア要素とコントローラの

A Controller Augmentation Method for k-cycle Capture Test Generation Using Partial Scan Designs Yuta ISHIYAMA, Toshinori HOSOKAWA, and Hiroshi YAMAZAKI ないと状態信号レジスタに接続されているハードウェ ア要素の可観測性が低く、コントローラの可制御性も低 くなる.状態レジスタと状態信号レジスタをスキャンす ることによりコントローラの可制御性は向上するが、コ ントローラの出力である制御信号線はデータパスに接 続されているためコントローラの可観測性は低い可能 性がある.可観測性を向上させるために、制御信号線に EXOR ツリーを挿入し、EXOR ツリーの出力に1ビット の観測用レジスタを付加する.この観測用レジスタをス キャン設計することによりコントローラの可観測性を 向上させる.

2-2 テスト容易化機能的 k 時間展開モデル

テスト容易化機能的 k 時間展開モデル(Easily Testable Functional k Time Expansion Models: ETF-kTEM)[4]とは, データパスのテスト容易な構造に着目して生成された k サイクルテスト生成モデルである. ETF-kTEM は,全て のハードウェア要素(演算器,マルチプレクサ,レジス タ,コントローラ)をテストできるように生成する必要 がある.図1にデータパス例を示し,図2に図1におけ る ETF-3TEM の例を示す.図1において,i1~i8 は外部 入力,o1,o2 は外部出力,R1,R2,R3,R5,R6,R7, R8 はホールド機能付レジスタ,R0, R4 はホールド機能

図 2. 表 1 で動作可能な ETF-3TEM 例

なしレジスタ, ADD0 は加算器, SUB0 は減算器, LESS0

表 1.	テス	ト動	作制御	٠	状態信号系列の例
------	----	----	-----	---	----------

	r1	r2	r3	r5	r6	r7	r8	m1	m2	m3	m4	m5	m6	m7	m8	m9	s
t1	1	Х	1	Х	Х	Х	Х	0	ΧХ	00	Х	XX	XX	XX	XXX	XXX	Х
t2	Х	1	Х	Х	Х	Х	Х	Х	01	XX	Х	ΧХ	XX	ΧХ	100	010	Х
t3	Х	Х	Х	Х	Х	Х	Х	Х	ΧХ	XX	Х	ΧХ	ΧХ	ΧХ	XXX	XXX	Х

は比較器, M1~M9 はマルチプレクサ, m1~m9, r1~r7 は制御信号, s は状態信号である. 表 1 に図 2 の ETF-3TEM を実現するための各時刻の制御信号値 (0,1,X)と状態信号値(0,1,X)の時系列であるテスト動作 制御・状態信号系列[4]を示す.表1において, t1~t3 は 時刻を表し,図2における四角で囲まれた時刻1~3にそ れぞれ対応している.図2のハードウェア要素の入出力 において,外部入力または時刻1のスキャンレジスタか らハードウェア要素の入力に何らかの値を伝搬でき、ハ ードウェア要素の出力から何らかの値を外部出力また は時刻3のスキャンレジスタに伝搬できるものは, ADD0, R1, R2, R3, M1 の入力 0, M2 の入力 1, M3 の入力 0, M8 の入力 4, M9 の入力 2 である. したがっ て、表1のテスト動作制御・状態信号系列[4]で動作す る演算器はADD0で、動作するレジスタはR1,R2,R3 で,動作するマルチプレクサの入力は M1 の入力 0, M2 の入力1, M3の入力0, M8の入力4, M9の入力2で ある. また, これらのハードウェア要素は図 2 の ETF-3TEM で動作可能であると呼ぶ.

2-3 kサイクルキャプチャテスト

kサイクルキャプチャテストとは、スキャンテストの キャプチャモード時のサイクル数が k であるテスト手 法である.図3に,k サイクルキャプチャテスト(k=3) のスキャンイネーブルとクロックの波形を示す.スキャ ンイネーブルが0のときにキャプチャモードとなり,k サイクル間(k=3) 順序動作を行う

2-4 コントローラ拡大

コントローラ拡大[2]とは、コントローラに状態や状 態遷移を追加するテスト容易化設計手法のことである. コントローラ中にはリセット状態から遷移し得ない状 態が存在する場合があり、その状態を無効状態[2]とい う. 本手法では、コントローラの状態レジスタをスキャ ン設計しているため、テスト時において、無効状態に遷 移可能となる.したがって、本手法では、ETF-kTEMの 動作を実現するためのテスト動作制御・状態信号系列を 出力する状態遷移を無効状態にのみ設計する.この無効 状態のことを無効テスト状態[2]と呼ぶ. データパスの テスト容易な構造に着目して生成された ETF-kTEM の 動作を実現する機能は、コントローラには備わっていな い可能性がある. ETF-kTEM を考慮したテスト動作制 御・状態信号系列を新たな状態遷移として無効テスト状 態の状態遷移として設計することにより, ETF-kTEM の 動作を実現可能となる. なお、ETF-kTEM を考慮したコ ントローラ拡大時に無効状態数が不足する場合は,コン トローラの状態レジスタのビット幅を増加させて、コン トローラの無効状態数を増やす.図4にコントローラ拡 大の例を示す. この例では, 図 2 の ETF-3TEM の動作 を実現するためのテスト動作制御・状態信号系列(表 1) を、無効テスト状態の状態遷移として図 4 の(a)の拡大

前のコントローラに適用する. 図 2 の ETF-3TEM の動 作を実現するためのテスト動作制御・状態信号系列(表 1)は 3 サイクル必要であるため,拡大する状態遷移も 3 つ必要である.しかしながら,無効状態数が 1 つしか存 在しないため,表 1 のテスト動作制御・状態信号系列を 無効状態で設計することができない.よって,状態レジ スタのビット幅を 2 から 3 に増加させることにより,さ らに 4 つの無効状態が増加する.図 4 の(b)は,表 1 の t1~t3 を st5~st7 の状態遷移としてそれぞれ設計した後の コントローラである.

3. テスト容易化機能的 k 時間展開モデルに おけるハードウェア要素のテスト可能性

3-1 コントローラのテスト可能性

本論文では、コントローラの論理回路は図5のように モデル化される.図5において、状態レジスタは有限状 態機械の状態を識別するためのレジスタである. 次状態 遷移論理は、次の状態遷移先の状態を決定するための組 合せ回路で,その出力値(次状態)は,状態レジスタの 値(現在状態)と状態信号の値によって決定される.出 力論理は、制御信号線の値を決定する組合せ回路で、そ の出力値(制御信号線の値)は、状態レジスタの値(現 在状態)と状態信号の値によって決定される.2-1節で 述べたように、コントローラ中の状態レジスタと状態信 号に接続されているデータパス中の状態信号レジスタ はスキャン設計が適用され,可制御・可観測なスキャン レジスタが用いられている. 次状態遷移論理のテストは スキャンレジスタから制御可能で, 故障の影響はスキャ ンレジスタで観測可能であり、1時間展開モデルを用い てテスト生成が可能である.一方,出力論理のテストは スキャンレジスタから制御可能であるが,故障の影響は 制御信号線に伝搬され,データパス中の外部出力または スキャンレジスタで観測しなければならない. したがっ

て、出力論理の故障を確実に検出するために制御信号線 に観測ポイントを挿入する.本手法では制御信号線に EXOR ツリーを挿入し、EXOR ツリーの出力に1ビット の観測用レジスタを付加する.この観測用レジスタをス キャンすることで出力論理の可観測性を向上させる.

3-2 演算器のテスト可能性

<定義1:テスト容易化機能的 k 時間展開モデルでテス ト可能な演算器>

演算器*f* が ETF-*k*TEM *j* で動作可能であるとき, 演算器 *f* は *j* でテスト可能であると呼ぶ.

例 1. 図 2 の ETF-3TEM において, 演算器 ADD0 は動作 可能であるので, ADD0 は図 2 の ETF-3TEM でテスト可 能である.

3-3 マルチプレクサのテスト可能性

<定義 2: テスト容易化機能的 k 時間展開モデルでテス ト可能なマルチプレクサの入力 i>

マルチプレクサmの入力iが ETF-kTEMjで動作可能であるとき、マルチプレクサmの入力iはjでテスト可能であると呼ぶ.

例2. 図2の ETF-3TEM において,マルチプレクサ *M*1 の入力0は動作可能であるので,*M*1 の入力0は図2の ETF-3TEM でテスト可能である.

<定義4:テスト容易化機能的時間展開モデル集合でテ スト可能なマルチプレクサ>

ETF-*k***TEM** の集合 *T* が与えられたとき, マルチプレクサ *m* の各入力が *T* 中の少なくとも 1 個の **ETF**-*k***TEM** でテ スト可能であるとき, マルチプレクサ *m* は *T* でテスト 可能であると呼ぶ.

3-4 レジスタのテスト可能性

<定義 5: テスト容易化機能的 k 時間展開モデルでテス ト可能なレジスタ>

レジスタrが ETF-kTEMjで動作可能であるとき、レジ スタrはjでテスト可能であると呼ぶ.

例 4. 図 2 の ETF3-TEM において, レジスタ *R*1,*R*2,*R*3 は動作可能であるので, *R*1,*R*2,*R*3 は図 2 の ETF3-TEM でテスト可能である.

3-5 回路全体のテスト可能性

<定義7:テスト容易化機能的 k 時間展開モデル集合で テスト可能な回路>

ETF-*k***TEM** の集合 *T* が与えられたとき,回路 *C* 中の各 演算器,各レジスタ,各マルチプレクサが *T* 中の少なく とも1個の **ETF-***k***TEM** でテスト可能であるとき,回路 *C* はテスト可能である.

4. DFT 手順

本 DFT 手法は, コントローラとデータパスに適用す る.まず, データパスの状態信号レジスタと, コントロ ーラの状態レジスタをスキャン設計する.次に, データ パスの全てのハードウェア要素 (演算器, マルチプレク サ、レジスタ)をテスト可能とするような ETF-*k*TEM を
生成する.生成するための方針は以下の通りである.
(方針 1) kの値は可能な限り小さくする.

(方針 2) テスト可能となる多入力ハードウェア要素の 各入力に何らかの値を伝搬するための(時刻,外部入力 またはスキャンレジスタ)の集合は可能な限り独立であ るようにする.

1 つのテスト対象ハードウェア要素に対して生成した ETF-*k*TEM の動作を実現するためのテスト動作制 御・状態信号系列を生成し、コントローラの無効テスト 状態に設計する. その後は、生成した ETF-*k*TEM に含 まれるテスト可能なハードウェア要素以外のテスト対 象ハードウェア要素に対して ETF-*k*TEM を生成する. 全てのテスト対象ハードウェア要素がテスト可能とな るまで以上の操作を繰り返す.

5. 実験結果

る.

本論文では、本 DFT 手法の有効性を示すために、3 種類の動作合成ベンチマーク回路[2]を用いた実験結果 を示す.本実験の故障モデルは単一縮退故障であり、デ ータパス及びコントローラ内の全故障を評価対象とす る.本実験では、実験対象の3種類の回路に対して、本 DFT 手法を適用し、比較するために、DFT を適用しな いオリジナル回路とフルスキャン設計を適用した回路 を用いて実験を行った.本 DFT 手法におけるパーシャ ルスキャン設計とフルスキャン設計のスキャンパス数 は1本とした.テスト生成には Synopsys 社の TetraMAX を用い、テスト生成時のバックトラックリミットは 10000 とした.

表2に回路情報を示し,表3にテスト生成結果を示す. 表2において,比較対象であるフルスキャン設計の面 積オーバヘッドは約17%~20%に対して,本 DFT 手法の 面積オーバヘッドはすべての回路において下回ってい

表3において、本DFT 手法の故障検出効率はフルス キャン設計の故障検出効率に対してほぼ同等であると 言える.また,テスト実行時間においては約82~88%の 削減に成功した.

おわりに

本論文では、パーシャルスキャン設計を用いた k サイ クルキャプチャテストのためのコントローラ拡大法を 提案した. 3 種類の動作合成ベンチマーク回路を用い た実験では、提案する DFT 手法を適用することで、フ ルスキャン設計と比べて故障検出効率を維持しつつ、面 積オーバヘッドの削減とテスト実行時間の削減をする ことができた. 今後の課題として、コントローラの無効 テスト状態の状態遷移を圧縮することにより、無効テス ト状態数を削減することにより面積オーバヘッドを削 減することが挙げられる.

謝辞

本研究に際し,貴重な意見を頂きました株式会社ソシオ ネクストの濱田周治様に深く感謝いたします. 本研究は一部,株式会社ソシオネクストとの共同研究に よる.

参考文献

- [1] 藤原 秀雄, ディジタルシステムの設計とテスト, 工学図書株式会社, 2004.
- [2] S. Ohtake, T. Masuzawa, and H. Fujiwara, "A non-scan approach to DFT for Controllers Achieving 100% Fault Efficiency, "Journal of Electronic Testing: Theory and Applications (JETTA), Vol. 16, No. 5, pp.553-566, Oct. 2000.
- [3] T. Masuda, J. Nishimaki, T. Hosokawa and H. Fujiwara, "A Test Generation Method for Datapaths Using Easily Testable Functional Time Expansion Models and Controller Augmentation," IEEE the 24th Asian Test Symposium (ATS'15), pp. 37-42, Nov. 2015.

回路名	ビット幅	テスト容易化設計手法	スキャンFF/ 総FF数	増加した状態レ ジスタビット幅	追加状態 遷移数	回路面積	面積オーバ ヘッド(%)
		オリジナル	0 / 262	0	0	4848	0.00
Sehwa 32bit	32bit	フルスキャン	262 / 262	0	0	5910	21.91
		本手法	10 / 266	3	227	5637	14.21
Maha 32t	32bit	オリジナル	0 / 198	0	0	4177	0.00
		フルスキャン	198 / 198	0	0	4983	19.30
		本手法	10 / 202	3	134	4845	15.99
Kim 32		オリジナル	0 / 198	0	0	4776	0.00
	32bit	フルスキャン	198 / 198	0	0	5581	16.86
		本手法	10 / 202	3	216	5537	15.93

表 2. 実験結果(回路情報)

表 3.	実験結果	(テス	ト生成結果)
	2 4 4 4 H H H H H	N P	·

回路名		Sehwa			Maha		Kim			
テスト容易化設計手法	オリジナル	フルスキャン	本手法	オリジナル	フルスキャン	本手法	オリジナル	フルスキャン	本手法	
テストサイクル数k	10	1	4	10	1	4	10	1	4	
故障検出率(%)	73.47	99.84	98.87	69.98	99.59	99.31	72.50	99.05	98.86	
故障検出効率(%)	73.57	100.00	99.01	70.25	99.99	99.70	73.14	99.99	99.70	
総故障数	17142	18204	20188	15294	16046	18098	17558	18360	20898	
検出故障数	12595	18175	19960	10682	15980	179473	12729	18185	20659	
テスト不能故障数	22	29	29	59	65	71	155	173	177	
テストパターン数	27	103	246	39	128	252	37	112	270	
テスト生成時間(sec)	79.18	0.17	64.08	61.23	0.29	117.31	94.56	0.34	99.65	
テスト実行時間(cycle)	815	27457	3299	962	25801	3371	898	22601	3595	