展張格子筋を用いた接着剤塗布型 PCM 補強 RC はりのせん断補強における補強効果

日大生産工(院) 〇中島博敬 日大生産工 阿部忠 日大生産工 師橋憲貴 JFE シビル(株) 塩田啓介 JFE シビル(株) 吉岡泰邦

1. はじめに

近年, RC はりや RC 橋においては,地震動や老朽 化により,支点付近にひび割れが発生し,その補強対 策が課題となっている。そこで本研究では, RC はり のせん断スパン比 1.0 および 1.5 の位置に 2 点載荷に よる静荷重実験を行い,地震動や老朽化により発生す る斜めひび割れ損傷を与え,接着剤でひび割れ補修し, 展張筋¹⁾を配置した接着剤塗布型 PCM 補強における RC はりの耐荷力および補強効果を検証し, RC 部材 の曲げおよびせん断補強法の一助とした。

2. 使用材料

(1) RCはり RC はりのコンクリートには、普通ポルトランドセメントを用いた。また、骨材には 5mm ~ 20mmの砕石および 5mm 以下の砕砂を用いた。実験時の圧縮強度は 30.8N/mm² である。次に、軸方向主鉄筋には SD295A D16、圧縮鉄筋には D13、スターラップには D6 を用いた。ここで、鉄筋の材料特性値を表-1に示す。

 (2) 展張筋(75×64mm) 展張筋には材質 SS400 の一般鋼板を用いる。ここで,展張筋の材料特性値を 表-2に示す。また,展張筋の寸法および形状を図-1 に示す。展張筋の降伏強度は 315N/mm² であり,道路 橋示方書・同解説²⁾に規定する降伏強度 295N/mm² を 上回っている。引張強度は 450N/mm² であり,弾性係 数は 200kN/mm² である。

展張筋の寸法は図-1に示すように、厚さ 4.5mm の 鋼板を用いて格子間寸法を 75×64mm とした。また、 主筋に相当する寸法は 4.5×7mm (断面積 31.5mm²) とし、縦筋すなわちスターラップに相当する寸法は 4.5×4mm (断面積 18mm²) とした。また、展張角度 は 70 度とし、付着性を高めるために高さ 5mm の突 起を設け、付着力を高める形状とする。なお、腐食を 防止するために溶融亜鉛メッキ処理を施した。

(3) ポリマーセメントモルタル (PCM) RC はり の増厚補強に用いる PCM には、長さ 12mm のビニロ ン繊維を配合した市販のセメント材料を用いた。ここ で、本実験供試体に用いる PCM の配合を表-3に示 す。なお、実験時における圧縮強度は 48.0N/mm² で ある。

表-1 鉄筋の材料特性値

鉄筋		降伏強度	引張強度	ヤング係数
SD 295A		(N/mm^2)	(N/mm^2)	(kN/mm ²)
引張鉄筋	D16	370	494	
圧縮鉄筋	D13	356	496	200
スターラップ筋	D 6	328	502	
表-2 展張筋の特性値				

		降伏強度	引張強度	ヤング係数
渦鉤板(SS400)	(N/mm^2)	(N/mm^2)	(kN/mm^2)	
	展張銘	315	450	200

図-1 展張筋の寸法および形状

表-3 PCMの配合表

百日	単位量 (kg/m	水結合比	
沒日	プレミックス粉体	水	(%)
PCM	1860	595	32

(4) 2種類の接着剤³⁾本実験にはひび割れ注入用 の浸透性接着剤と付着用接着剤を用いた。浸透性接着 剤は劣化したコンクリート部材の表面を強固にするこ とができ,ひび割れ幅が 0.05mm まで浸透する接着剤 である。浸透性接着剤の付着強度は 2.6N/mm² である。 次に,既設コンクリートの削り面と PCM との付着性 を高めるために補強界面に高耐久型エポキシ系樹脂接 着剤(以下,付着用接着剤とする)を用いる。付着強 度は 3.7N/mm² 確保されている。

3. RCはりの供試体寸法

本実験の供試体寸法を図-2に示す。供試体寸法は 支間 1,300mm, 張出部 200mm, 全長 1,700mm である。 また, 断面寸法は, 幅 250mm, 高さ 300mm とする。 引張鉄筋には D16 を 3 本配置し, 有効高は 260mm で ある。また, 圧縮側に D13 を 2 本配置し, 鉄筋中心

Strength Effect of Shear Reinforcement of Adhesive-Applied PCM Reinforcing RC Beam Using Metal-Grid Expanded Type

Hirotaka NAKAJIMA, Tadashi ABE, Noritaka MOROHASHI, Keishuke SHIOTA and Yasukuni YOSHIOKA

1 - 7

図-2 供試体寸法および載荷位置

からコンクリート表面までを 40mm とした。スター ラップには D6 を用い, 150mm 間隔で配置した。

4. RCはりの静荷重実験および結果

(1) 実験方法 荷重載荷位置およびたわみの計測位置を図-2に示す。供試体 RC-N1 は図-2に示すおうにせん断スパン比 1.0,供試体 RC-N2 はせん断スパン比 1.5 の位置の 2 点載荷とする。静荷重実験における荷重条件は 0kN から 5kN ずつ増加し,25kN に達した後,荷重 5kN ずつ 5kN まで除荷し,残留値を計測した。これを1サイクルとし,供試体が破壊するまで荷重を増減する。本実験におけるたわみ,鉄筋のひずみの計測位置は図-2に併記した。

(2) 2点載荷による実験結果およびひび割れ補修

 RCはりの最大耐荷力 せん断スパン比 1.5 (= 390/260)の位置,すなわち両支点から 390mmの位置 に2点載荷した供試体 RC-N1の最大耐荷力は 295.1kNである。破壊は曲げ破壊となった。次に,せん断スパン比 1.0の位置,すなわち両支点から 260mm の位置に2点載荷した供試体の最大耐荷力は 409.0kN である。破壊は曲げ破壊となった。

2)荷重とひずみの関係 RC はりの引張鉄筋中央 の荷重とひずみの関係を図-3に示す。表-1に示す D16 の材料特性値より鉄筋の降伏ひずみは 1850×10⁻⁶ である。せん断スパン比 1.5 の位置に載荷した供試体 RC-N1 は,鉄筋が降伏した荷重付近から急激にひず みが増加している。鉄筋が降伏した荷重は 270kN で ある。次に,せん断スパン比 1.0 の位置に載荷した供 試体 RC-N2 は, RC-N1 と同様に,鉄筋が降伏した荷 重 388kN からひずみの増加が著しくなっている。

3)荷重とたわみの関係 支間中央の荷重とたわみの関係を図-4に示す。供試体 RC-N1 の荷重とたわみ

の関係は,荷重 215kN まで線形的に増加し,その後 の荷重増加でたわみの増加がやや大きくなっている。 荷重 250kN 載荷後,急激にたわみの増加が著しくな っている。鉄筋が降伏した荷重 270kN 時のたわみは 8.3mm である。最大荷重 295.1kN のたわみが 18.3mm である。その後は荷重の増加は見られず破壊に至って いる。残留たわみは 16.1mm である。

供試体 RC-N2 の荷重とたわみの関係は,荷重 375kN まで線形的に増加し,その後の荷重増加でたわみが急 激に増加している。鉄筋が降伏した荷重 388kN 時の たわみは 5.9mm である。最大荷重 409.0kN のたわみ が 9.79mm,残留たわみは 9.41mm である。

4) 破壊状況 本実験における破壊時のひび割れ状況を図-5に示す。供試体 RC-N1 の破壊時のひび割れ状況は2点載荷位置内に下縁から発生したひび割れが上縁まで達している。また,左支点から荷重載荷位置にほぼ45度で斜めひび割れが伸展している。破壊は荷重250kNから急激なたわみが増加し,はり中央から10cm離れた位置で曲げ破壊となった。

供試体 RC-N2 は荷重載荷位置を両支点から 260mm の位置とし、せん断破壊となる載荷位置とした。破壊 時のひび割れ状況は 2 点載荷位置内に下縁から発生し たひび割れが上縁まで達している。また、支点から荷 重載荷位置方向にはせん断による斜めひび割れが発生 している。破壊は荷重 400kN 付近から急激 にたわみが増加し、RC はり中央から 10cm 右側付近 で曲げ破壊となった。

(3) RCはりのひび割れ補修法 RC はりのひび割れ を,浸透性接着剤で補修する。ここで,補修手順は, ひび割れ発生箇所に,浸透性接着剤の注入の際,接着 剤が漏れないようにコンクリート表面をシール材で覆 う。浸透性接着剤はひび割れ幅が 0.05mm まで浸透す ることから確実にシール材で覆う必要がある。その後, 浸透性接着剤の注入器具を取り付けし,接着剤を圧入 する。注入後,養生は8時間行った。養生後は,シー ル材をデスクサンダーで研掃する。研掃後のひび割れ 箇所には接着剤が浸透していることが確認できる。

- 5. 補強供試体寸法,補強法および実験方法
- (1) 補強供試体寸法 破壊時のひび割れ補修を施し

図-6 増厚補強はりの供試体寸法

た RC はりのせん断領域を含めたはり全体に展張筋を 配置するものとする。補強範囲および展張筋配置位置 を図-6に示す。展張筋を配置した補強法における増 厚の寸法は,残留たわみを考慮して底面は 50mm,側 面は 25mm 厚保で補強した。RC はりの支間は 1300mm であるが,側面はせん断領域および支点から張出 120mm の範囲までを補強するものとする。展張筋は 図-1に示す格子間隔 75mm×64mm である。展張筋は U 形に折り曲げ加工し,RC はり底面から 10mm の位 置に展張筋を配置した。ここで,供試体 RC-N1 に展 張筋を配置した供試体名称を RC-M1,供試体 RC-N2 に展張筋を配置した供試体を RC-M2 とした。

(2) 展張筋を用いた補強法 ひび割れ損傷を与えた 供試体 RC-N1, N2 に展張筋を用いた補強手順は,破 壊した RC はりのひび割れ箇所に浸透性接着剤を浸透 させてひび割れ補修した後,補強範囲をデスクサンダ ーで研掃し,補強範囲に型枠を設置する。次に,U型 に折り曲げ加工した展張筋をかぶり 10mm の位置に 設置する。次に,RC はりのコンクリートと PCM と の付着性を高めるために付着用接着剤を厚さ 1.0mm 程度で塗布する。この接着剤の硬化時間は 120 分程で あることから,接着剤塗布後は直ちに PCM を増厚補 強する。表面仕上げし,養生し,型枠を撤去する。

(3) 補強RCはりの実験方法 荷重載荷位置およびた わみの計測位置を図-6に併記した。補強後の静荷重 実験は、せん断スパン比 1.0、すなわち両支点から 260mmの位置、荷重載荷間隔を780mmとする2点載 荷とした。 荷重条件は 0kN から5kN ずつ増加し、 25kN に達した後、荷重5kN ずつ5kN まで除荷し、残 留値を計測した。これを1サイクルとし、25kN 増加 するごとに残留値を計測する。このサイクルで供試体 が破壊するまで荷重を増加する。

6. 結果および考察

(1) 耐荷力および破壊モード 補強 RC はり供試体 の最大耐荷力を表-4に示す。なお、未損傷供試体の 破壊時の耐荷力についても表-4に併記した。荷重載 荷位置をせん断スパン比 1.5 の位置に荷重を載荷した 供試体 RC-N1 の最大耐荷力は 295.1kN で、曲げ破壊

表-4 実験耐荷力および破壊モード

供試体	耐荷力 (kN)	分担耐荷力 (kN)	耐荷力比	破壊モード
RC-N1	295.1			曲げ破壊
RC-M1	709.7	414.6	2.40	せん断破壊
RC-N2	409.5			曲げ破壊
RC-M2	700.4	290.9	1.71	せん断破壊

となった。この供試体に展張筋を配置し, PCM 増厚 補強した供試体 RC-M1 にせん断スパン比 1.0 の位置 に2点載荷した場合の最大耐荷力は 709.7kN である。

次に, せん断スパン比 1.0 の位置に 2 点載荷し, 曲 げ破壊となった供試体 RC-N2 の最大耐荷力は 409.5kN である。この供試体に展張筋を配置し, 接着 剤塗布型 PCM 増厚補強した供試体 RC-M2 の耐荷力 は 700.4kN である。展張筋を配置し,本補強法の分担 耐荷力は 290.9kN であり,補強効果は 1.71 倍となっ た。なお,供試体 RC-M1 と比較すると,ほぼ近似し た耐荷力が得られた。

(2) 鉄筋の荷重とひずみの関係 補強後の荷重ひず みの関係を図-7(1)に示す。なお、補強前の RC はり の荷重とひずみの関係も図-7に併記した。補強後の 荷重とひずみの関係は、補強前の静荷実験における残 留ひずみを初期値とした。

供試体 RC-M1 および RC-M2 ともに荷重 200kN 付 近まではひずみの増加は見られない。その後の荷重増 加においては供試体 RC-M1 が 650kN まで線形的に増 加している。その後,急激にひずみが増加し,破壊に 至っている。供試体 RC-M2 も,残留値は異なるもの のほぼ同様な増加傾向を示している。荷重 680kN か らひずみの増加が著しくなっている。したがって,両 供試体の補強後のひずみの増加より,接着剤の効果に より破壊荷重付近まで一体化されているものと推察さ れる。

(3) 展張筋の荷重とひずみの関係 展張筋の荷重と ひずみの関係を図-7(2)に示す。供試体 RC-M1 の展 張筋の荷重とひずみの関係は、荷重 650kN までは線 形的に増加し、その後が重増加から急激にひずみが増 加している。展張筋が降伏ひずみ 1635×10⁶ に達した 時点の荷重は 530kN である。一方、供試体 RC-M2 の 展張筋のひずみは、荷重 610kN までは線形的に増加 している。降伏ひずみに達した荷重は 590kN ある。 展張筋のひずみが降伏した後の荷重増加から、ひずみ の増加が著しくなっている。

以上より,破壊した RC はりにひび割れ補修を施し, その表面に展張筋を配置し,接着剤塗布型 PCM 増厚 補強することで,鉄筋および展張筋が荷重を分担して いる。

(4) 荷重とたわみの関係 補強後の RC はり供試体 RC-M のたわみと等価走行回数の関係を図-8に示す。

図-7 荷重とのひずみの関係

(2) RG-M2

図-9 補強はりのひび割れ損傷状況

なお,図-8に示す補強後の RC はりの荷重とたわみ の関係は補強前の静荷重実験における残留たわみを初 期値とした。

供試体 RC-M1, M2 ともに荷重 570kN 付近まで線 形的に増加している。その後の荷重増加において,両 供試体ともに荷重 700kN 付近まで線形的に増加して いる。その後の荷重増加でたわみが急激に増加し,破 壊に至っている。破壊時のたわみは,供試体 RC-M1 が 21.7mm,供試体 RC-M2 が 44.0mm である。

(5) 破壊状況 補強後の静荷重実験における破壊 状況を図-9に示す。なお、赤線は未損傷 RC はりに おけるひび割れ状況、黒線は補強後の静荷重実験にお けるひび割れ状況である。

補強後の供試体 RC-M1, M2 ともに,荷重載荷位置 がせん断スパン比 1.0 の位置に荷重載荷した結果,破 壊は荷重載荷位置と支点から 60mm,すなわち補強断 面の段差部を結ぶせん断破壊となった。また,補強前 のひび割れと異なる位置にひび割れが発生しているこ とから,ひび割れ補修に接着剤が適切に浸透し,一体 化されていることが確認された。

7. まとめ

(1) RC はりのせん断スパン比 1.5 および 1.0 の位置に 2 点載荷した供試体の耐荷力はそれぞれ、295.1kN、 409.5kN である。このはり部材にひび割れ補修後、 本提案する展張筋を配置し、接着剤塗布型 PCM 増厚補強した場合について、せん断スパン比 1.0 の位置に 2 点載荷したときの最大耐荷力は 709.7kN, 700.4kN となり,補強効果が得られた。 土木学会式による理論耐荷力と比較すて実験値が 1.15 倍上回り,安全側に評価されるものの,相関 関係が得られた。

- (2) 曲げ破壊した RC はりの斜めひび割れに対してひび割れ補修を施した後,展張筋を配置し,接着剤と塗布した PCM 増厚補強法は,耐荷力性能が1.7倍向上することから地震動によるひび割れ損傷を受けた RC はり部材の補強法として実用的であると言える。
- (3) 荷重と鉄筋および展張筋のひずみの関係は、補強 後のひずみの増加傾向は RC-M1, M2 ともに荷重 650kN までは同等な増加傾向を示している。この 時点の理論最大耐荷力と比較すると 1.06 倍理論値 を上回っている。展張筋のひずみの増加において は両供試体ともに降伏ひずみ達した後も線形的に 増加している。
- (4) 荷重とたわみの関係において、補強後のたわみの 増加傾向は、RC-M1、M2 ともに荷重 650kN まで はほぼ得同等な増加傾向を示している。補強後の 理論式耐荷力の 1.06 倍である。
- (5) 破壊時のひび割れ状況は載荷点と補強端部を結ぶ せん断破壊となったが、ひび割れ補修した位置と は異なる位置に新たなひび割れが発生しているこ とから、ひび割れ補修法も適切行われた結果であ ると判断出来る。

参考文献

-22 -

- 阿部忠,塩田啓介,吉岡泰邦,今野雄介:2 タイ プの鋼板格子筋を用いた RC はりの PCM 増厚補強 における補強効果の検証,セメント・コンクリー ト論文集, Vol.69, No.1, pp.634-641, 2016.3
- 日本道路協会:道路橋示方書・同解説 I, II, III, 2012
- 伊藤清志,阿部忠:2 タイプの接着剤を塗布した RC 床版の上面補修法の耐疲労性の評価および施工 技術,日本コンクリート工学会年次論文集,Vol.39, No.1, pp.2131-2136, 2017.7