日本大学生産工学部における強震観測

-その5 地震入力と応答評価-

日大生産工(院) 〇伊藤 洵 日大生産工 藤本 利昭

1 はじめに

建物の耐震性確保を確実なものとするため には、建物への地震入力と応答をより精度良 く評価することが重要である。そのため、強 震観測による地盤、建物の応答の実測の蓄積 が必要であり、2011年東北地方太平洋沖地震 以降多くの建物で検討されている¹⁾。

本研究では、2014年より継続的に行われて いる強震観測記録を基に²⁾,建物の屋内外で 同時観測された強震観測記録を整理し、39号 館の地震入力と地震応答の特性を検討する。

2 強震観測概要

2.1 対象建物及び強震観測概要

写真1に39号館の外観写真,図1a)に39号館 の強震計設置階平面図,b)に断面図,表1に地 盤概要を示す。強震計は,建物内の地上1,3, 6階の3箇所に設置している。地盤概要に示し たS波はN値から推定した³⁾。

対象建物は、キャンパス西側に位置する 2012年に竣工した建物である。構造は鉄骨造 の純ラーメン構造であり、平面形状は約47m× 約53m,地上6階建て、建物高さ30.90m(軒高 30.08m)の建物で、6階西側がセットバックし ている。基礎形式は直径0.6mから1mのPHC杭 基礎でGL-31.6mの砂質層に支持されている。

写真1 39号館外観写真

2.2 検討地震概要

検討に用いた地震は、2014年8月から2018 年7月末までの約4年間で得られた観測記録の うち、本キャンパスで観測を行っている全強 震計(4号館、5号館、37号館、39号館、自由

Strong-motion Observation of College of Industrial Technology, Nihon University — Part5 Evaluation on input motion and response —

Makoto ITO and Toshiaki FUJIMOTO

地盤)で記録が得られた15個のデータを使用 した。なお、これらの地震はキャンパスに最 も近い習志野市鷺沼の観測所の記録では、震 度2(10個)、震度3(5個)で震度4以上の大きい震 度はない。

また,対象とした地震の震源深さおよびマ グニチュードを地図上にプロットして図2に 示す。図2から全強震計で観測された地震は, 茨城県南部,埼玉県南部,千葉県北西部,福 島県沖を震源とする地震多い。マグニチュー ドは4から5の範囲が多く,震源深さは9kmか ら682kmの範囲になっている。

図2 全強震計で観測された地震概要4)

3 検討結果

3.1 地表と1階の最大加速度,最大速度

入力損失効果を簡易に評価するため、地表 と建物1階での最大加速度、最大速度を比較 する。図3に、39号館の1階最大加速度(PBA) と地表最大加速度(PGA)の関係を示す。図4に 39号館の1階最大速度(PBV)と地表最大速度 (PGV)の関係を示す。なお、図3、4ともに図 中には原点を通る回帰直線を示している。

図 3,4 より NS, EW ともに建物1 階の最 大加速度,最大速度が地盤よりも小さくなっ ており,入力損失効果が認められる。

また,図3の回帰式の傾きはNS,EWでは 0.70,0.59となり,図4の回帰式の傾きはNS, EWでは0.81,0.68となった。回帰式の傾き は,最大速度よりも最大加速度のほうが小さ く,最大加速度の低減割合が大きくなってい る。

3.2 地表と基礎のフーリエスペクトル

振動数領域における入力損失効果を検討す るため、地表面に対する建物1階の平均フー リエスペクトル比を図5に示す。平均フーリ エスペクトル比は、個々の地震記録でフーリ エスペクトルを求めた後、アンサンブル平均 して算出した。

図5より,NS,EWともに凹凸があるもの の,低振動数でスペクトル比は1に近く,高 振動数になるにつれて比が小さくなる傾向が みられ振動数領域においても入力損失効果が 認められる。なお,NS,EWともに6Hzから 7Hz付近でスペクトル比が1より大きくなっ ており,この点については今後の課題である。

3.3 入力損失の簡易評価式

入力損失の簡易評価式として,下記 a), b) の方法((1),(3)式)を用いて算定する⁵⁾⁶⁾。 3.3-1 直接基礎における簡易評価法 a)土木学会での提案式⁵⁾

地表面に対する基礎入力動の水平成分の原 田の提案式は、次式で表される。

$$H(\omega) = \begin{cases} \sin(\omega D_f / V_s) / (\omega D_f / V_s) & \omega \le \omega_n \\ 0.63 & \omega > \omega_n \end{cases}$$
(1)

ここに、 D_f , V_s はそれぞれ基礎の根入れ深さ, 根入れ深さまでの V_s を層厚で重み付け平均し たものであり、 ω_n は次式で示される。

$$\omega_n = \pi V_s / (2D_f) \tag{2}$$

b)土木学会の委員会での提案式⁶⁾

(1)式を基に耐震委員会により修正された式である。

$$H(\omega) = \begin{cases} \left\{ \sin(\omega D_f / V_s) / (\omega D_f / V_s) & \omega \le \omega_n \right\}^2 \\ 0.405 & \omega > \omega_n \end{cases}$$
(3)

3.3-2 杭基礎における簡易評価式

(1), (3)式において, 杭による地震動の抑制 効果については, 次式を用い, 杭による等価 根入れ深さ*Leg*を考慮する⁷⁾。

$$L_{eq} = \pi (\Sigma E I/G)^{1/4}/4$$
 (4)

ここに, *E*, *I*は杭のヤング係数, 断面2次モ ーメント, *G*は地盤のせん断弾性係数である。 実際の根入れ深さと杭による等価根入れ深さ を杭基礎の等価根入れ深さとし, 次式で求める。

$$D_{feq} = D_f + L_{eq} \tag{5}$$

本研究では, a)の方法で(5)式により基礎の根入れ深さとして杭を考慮した場合, b)の方法で 基礎の根入れ深さとして杭を考慮しない場合 と, (5)式により杭を考慮した場合の3ケース について検討した。

3.4 観測記録と評価式の比較

入力損失効果について既存の簡易評価式に より予測できるか検討するため、地表面に対 する建物1階の平均フーリエスペクトル比を 評価式とともに図6に示す。

図6より、観測記録ではNS, EWともに約 6Hzから7Hz付近でスペクトル比が評価式よ りも大きくなってしまったが、全体的に評価 式よりも小さい値をとっていることが確認で きる。よって杭を考慮した評価式の方が、観 測記録と対応が良いものと考えられる。

なお、観測記録と原田式が一致しない点に ついては、原田式は鉛直下方入射を仮定した 地表面に対する基礎入力動の水平成分を示し た提案式であるのに対し、今回観測した地震 波は図2に示したとおり震源または震源深さ が遠方のものを含んでいるため、表面波が卓 越してしまっていることが影響していると考 えられる⁸。

3.5 応答性状

建物1階から6階,地表から建物6階,及び地 表から建物1階への伝達特性を把握するため、 対応するフーリエスペクトル比を図7,8,9 に示す。グラフでは,建物1階での最大加速度 が10cm/s²以下,10cm/s²から20cm/s²,20cm/s² 以上の範囲に分類し,最大加速度ごとの平均 フーリエスペクトルを示す。

図7,8,9より,各加速度で,6F/1F,6F/Free が示す1次モードのピークが位置する振動数 は約1Hz付近の値となり,6F/1Fと6F/Freeの1 次固有振動数がほぼ変化していないことがわ かる。また,加速度ごとの固有振動数の変化 も確認できない。

1F/Freeには上部構造の慣性力の影響が含 まれるが、概ね基礎入力動に対応し、6F/Free は、地盤と構造物の相互作用系の応答に対応 すると考えられる。

図7より,建物1階の最大加速度が10以下の 場合,1F/Freeが1を下回っていることに対応 して、6F/Freeのピーク高さも、6F/1Fのピーク 高さより低くなり,入力損失により応答が低 減されていると推測される。

5 まとめ

日本大学生産工学部津田沼キャンパス39号 の約4年間における強震観測記録を整理し,39

-53-

号館の地震入力と地震応答の特性を検討した。 その結果,以下の知見を得た。

- 地表と建物1階による最大加速度,最大速 度の比較をした結果,建物1階では入力低 減が認められ,その値は最大速度よりも最 大加速度のほうが大きくなっている。
- 2) 鉛直下方入射を仮定した提案式である原田式と、震源または震源深さが遠方のものを含んだ観測記録との比較では、表面波の影響と考えられる差異が生じた。
- 3) 1階の最大加速度が10cm/s²以下の場合,建 物の応答加速度の低減効果が顕著だった。
- 上部構造の1次固有振動数は、地盤と構造 物の相互作用による違いは認められなかった。

参考文献

 北堀隆司ほか:地震観測に基づく鉄筋コンクリ ート造集合住宅の地震入力と応答評価(その1~ その3), 日本建築学会大会学術講演梗概集, pp.13-18, 2013.08

- 藤本利昭,師橋憲貴,下村修一,高畠秩:日本 大学生産工学部における強震観測 -その3 39号 館における観測の概要-, pp.1-4, 2014.12
- 日本道路協会:道路橋示方書・同解説 V耐震 設計編, p.33, 2012.3
- 4) 地震検索システムEQLIST: http://www5b.biglobe.ne.jp/t-kamada/CBuilder/eqli st.htm, 2017.10
- 原田隆典,久保慶三郎,片山恒雄:有効入力動の計算式とその実測例による検討,土木学会論 文集,第362号,pp.435-440,1985.10
- 6) 土木学会編:動的解析と耐震設計,第2巻,動 的解析の方法,技報堂出版,pp.369-370,2009.8
- 河辺美穂,関崇夫:埋込みを有する群杭基礎の 基礎入力動の簡易評価に関する研究,日本建築 学会大会学術講演梗概集,pp369-370,2009.8
- 天埜貴仁,高橋武宏,福和信夫,護雅史,飛田 潤:実測に基づく基礎入力動の推定に関する研 究,東海支部研究報告集,pp.249-.252,2014.09

-54-