長方形鋼管の曲げ圧縮性状に関する実験的研究

日大生産工(学部) 〇三浦 智美 日大生産工 藤本 利昭

1 まえがき

近年、コンクリート充填鋼管(CFT: Concrete Filled Steel Tube,以下CFTと略称)構造におい て、より合理的な設計を目的として、長方形鋼 管を用いたCFT柱が適用されており、実験的研 究も行なわれている¹⁾⁻⁴。これらの研究では、 長方形CFT柱の構造性能と比較する目的で、コ ンクリートを充填していない長方形鋼管の実 験も行なわれているが、長方形鋼管に関する既 往の研究も少なく、その構造性能については明 らかになっていない。

そこで本研究では、CFT柱の構造性能をより 詳細に検討するための第一段階として、正方形 ならびに断面の辺長比(縦横比)が異なる長方 形鋼管の中心圧縮実験および偏心圧縮実験を 行ない、断面形状の違いが曲げ圧縮性状に及ぼ す影響を検討することとした。

2 実験概要

2.1 試験体概要

表-1に中心圧縮実験,表-2に偏心圧縮実験の 試験体一覧を示す。試験体は,正方形鋼管およ び長方形鋼管とし,断面の辺長比(縦横比)が, 1:1,1:2/3,および1:1/2に設定した。断面 寸法は,長辺方向の長さBを150mmに統一し, 短辺Dを150mm,100mm,75mmの3種類に変化 させ,板厚tは4.5mmに統一した。なお試験体高 さLは断面長辺Bの3倍(=450mm)とした。

実験変数は、中心圧縮実験では断面形状、偏 心圧縮実験では断面形状と曲げ方向(強軸曲げ、 弱軸曲げ)および偏心距離e(25mm,50mm) とした。なお偏心圧縮実験の偏心距離は、予め 計算した軸方向カー曲げモーメント(*N-M*)関 係を基に、最大荷重が試験体の降伏軸耐力*N*,の 0.6倍程度となるよう正方形鋼管及び長方形鋼 管の強軸曲げでは偏心距離e=50mm、弱軸曲げ ではe=25mmと設定した(図-1参照)。

2.2 使用材料

試験体には、一般構造用角形鋼管STKR400を 使用した。使用した鋼管の材料試験結果を表-3 に示す。材料試験片は5号試験片とし、試験片 は角形鋼管の平板部より切り出して行なった。

表-1 中心圧縮試験体

		断面寸法		古ャ	幅厚比		
	幅	せい	板厚		B/t	D/t	
	B(mm) [D(mm) t(mm)		(長辺)	(短辺)	
150×150	150	150	4.22		35.5	35.5	
150 imes 100	150	100	4.24	450	35.4	23.6	
150×75	150	75	4.16		36.1	18.0	

表-2 偏心圧縮試験体

\langle		断面寸法		吉 *	幅』	孠比		偏心距離 e(mm)	
	幅 B(mm)	せい D(mm)	板厚 t(mm)	L(mm)	B/t (長辺)	D/t (短辺)	曲げ方向		
150×150	151	151	4.22	450	35.8	35.8	-	50	
150×100	150	100	1.24	450	35.4	23.6	強軸	50	
100 × 100	150	100	4.24	450	33.4	23.0	弱軸	25	
150×75 150 75 4.16	150	150 75	4.16	450	26.1	10.0	強軸	50	
	450	30.1	10.0	弱軸	25				

図-1 軸カー曲げモーメント関係

表-3 材料試験結果

	板厚	降伏強度	引張強度	ヤング係数	伸び率
\sim	t(mm)	$\sigma_y(N/mm^2)$	$\sigma_t (N/mm^2)$	$E_{s}(kN/mm^{2})$	ε (%)
150 imes 150	4.22	405	484		32.6
150 imes 100	4.24	417	470	205	30.8
150×75	4.16	414	484		31.5

Experimental Study on Bending Compression Behavior of Rectangular Steel Tubes

Tomomi MIURA and Toshiaki FUJIMOTO

2.3 加力および測定方法

中心圧縮実験の載荷装置を図-2(a)に, 偏心 圧縮実験の載荷装置を図-2(b)に示す。加力は 2000kN万能試験機を使用し,実験は,中心圧縮 実験では平均軸方向ひずみが5%に達するまで, 偏心圧縮実験では曲率 φ Dが5%に達するまで 行なうこととした。

測定は、中心圧縮実験では、4本の変位計に より得られる軸方向変位 δ から試験体全長Lの 平均軸ひず $\lambda \varepsilon$ (= δ/L)を求めた。偏心圧縮実験 では、4本の変位計により得られる引張側、圧 縮側の軸方向変位 δ_t 、 δ_c から試験体全長Lの平均 軸ひず $\lambda \varepsilon$ (=($\delta_t+\delta_c$)/L)および平均曲率 ϕD (=($\delta_t+\delta_c$)/($L \times I$) ×D、I:引張側と圧縮側の変 位計間の距離で、150mmとした)を求めた。な お試験体鋼管表面にはひずみゲージを貼付し、 各部のひずみを測定した。

3 実験結果および考察

3.1 中心圧縮実験

表-4に中心圧縮実験結果の一覧,図-3に軸力 ー軸ひずみ関係を示す。断面積4は角形鋼管の 角部のRを考慮した値であり,降伏耐力Nyは, 断面積4に材料試験により得られた降伏強度σy を乗じた値である。

実験における最大荷重Nuと降伏耐力Nyとの 比Nu/Nyは0.96~0.99であり、全ての試験体にお いて降伏耐力近傍で最大荷重に達したが、断面 形状の違いによる差違は明らかではなかった。 また,最大耐力発揮後は局部座屈により急激な 耐力低下を示したが,その耐力低下割合も試験 体による明確な差異は認められなかった。

3.2 偏心圧縮実験

表-5に偏心圧縮実験結果の一覧を示す。表中の最大軸力 $_eN_u$ は実験時の最大荷重とし、曲げ耐力実験値 $_eM_u$ は最大軸力時の付加曲げモーメント(曲げ変形による試験体高さ中央の水平変形 δ_L により生じる値)を考慮した値 $_eM_u=_eN_u$ ・($e+\delta_L$)として評価した。また計算耐力 N_y , M_u は、正方形断面CFTの設計式を長方形断面に適用できるよう明示した式⁵⁾から鋼管部分の終局耐力を表した次の式を用いて求めた。

表-4 中心圧縮実験結果

	断面積 降伏強度		降伏耐力	最大荷重	N/N.,	
\sim	A(mm ²)	$\sigma_y(N/mm^2)$	$N_y(kN)$	$N_u(kN)$	· ·u/ · ·y	
150×150	2415	405	979	951	0.97	
150 imes 100	2002	417	835	829	0.99	
150×75	1758	414	728	700	0.96	

図-3 軸カー軸ひずみ関係

	青田	#15	七回	より		信と明難	彩西巷	断面二次	幅厚比		軸力			曲げ		
	吧 P(mm)	D(mm)	11X/子 +(mm)		曲げ方向	(mm)	可回道	モーメント	B/t	D/t	計算値	実験値	NL/N	計算値	実験値	NA /NA
	D(IIIII)	D(mm)	t(mm)	L(mm)		e(mm)	A(mm ⁻)	$I(\times 10^3 mm^4)$	(長辺)	(短辺)	$N_y(kN)$	$_{e}N_{u}(kN)$	e ^{IN} u/IN _y	$M_u(kN{\boldsymbol{\cdot}}m)$	$_{e}M_{u}(kN\cdot m)$	e ^{IVI} u/IVIu
150×150	151	151	4.22	450	-	50	2432	8648	35.8	35.8	985	528	0.54	29.3	26.5	0.91
150×100	150	100	1 21	450	強軸	50	2002	6253	35.4	23.6	835	481	0.58	24.7	24.9	1.01
100 ~ 100	100	100	4.24	400	弱軸	25	2002	3348	55.4	23.0	635	539	0.65	13.9	14.2	1.02
150×75	150	75	1 16	450	強軸	50	1758	5045	36.1	18.0	728	414	0.57	21.0	21.7	1.03
100 / 10	150	15	4.10	430	弱軸	25	1750	1713	50.1	10.0	120	402	0.55	10.8	10.8	1.00

表-5 偏心圧縮実験結果

ここで、*sNu*: 鋼管の終局圧縮耐力, *xn*: 鋼管 内側の圧縮縁から中立軸までの距離, *cD*: 鋼管 内側の断面せい, *t*: 鋼管の板厚, *σy*: 降伏強度, *sMu*: 鋼管の終局曲げ耐力, *D*: 鋼管の断面せい, *B*: 鋼管の断面幅, *R*: 鋼管角部外側の曲げ半径, *r*: 鋼管角部内側の曲げ半径である。

(a) 軸カー軸ひずみ関係

図-4に軸カー軸ひずみ関係を示す。同一断面 で曲げ方向が異なる試験体の軸力比N_u/N_yがほ ぼ等しくなるよう偏心距離を設定したため,軸 力の最大値はほぼ同程度となっている。

最大値に到達した点を比較すると,同一断面 で曲げ方向が異なる場合,最大耐力時のひずみ は強軸曲げ試験体の値が弱軸曲げ試験体に比 べ大きくなっている。また曲げ方向ごとに比較 すると,正方形断面から断面が細長くなるほど 最大耐力時のひずみが大きくなっており,この 傾向は強軸,弱軸ともに同様の傾向が認められ るが,強軸曲げ試験体がその傾向が顕著であっ た。一方,最大耐力以降の耐力低下勾は,顕著 な差異は認められない。

(b) 曲げモーメントー曲率関係

図-5に曲げモーメントー曲率関係を示す。なお、図の縦軸Mは付加曲げモーメントを考慮した値 $M=P \cdot (e+\delta_L)$ を用い、横軸は試験体全長にわたる平均曲率に長辺の断面せいを乗じた ϕ Dで示している。

軸力と同様に,最大値に到達した点を比較す ると,同一断面で曲げ方向が異なる場合,最大 耐力時の曲率は強軸曲げ試験体の値が弱軸曲 げ試験体に比べ大きくなっており,曲げ方向ご とに比較した場合,断面が細長くなるほど最大 耐力時の曲率が大きくなるという同様の傾向 を示した。この傾向は強軸,弱軸ともに同様の

である。一方,最大耐力以降の耐力低下勾は, 顕著な差異は認められない。

(c) 終局曲げ耐力の比較

図-6に実験値と計算曲げ耐力との比_eM_u/M_u と幅厚比との関係を示す。図の横軸は,短辺方 向の値Dを用いている。正方形鋼管試験体では, 実験値と計算曲げ耐力との比_eM_u/M_uは0.91で 実験値が計算耐力を下回った。一方長方形鋼管 試験体では,強軸曲げ,弱軸曲げともに_eM_u/M_u は1.00~1.03で,ほぼ一致する結果となった。

このことから,曲げ方向が強軸,弱軸いずれ の場合においても,断面形状,特に短辺の影響 が認められるものと考えられる。

(d) 座屈波長の比較

表-6に座屈波長L_b,図-7に座屈波長-幅厚比 (短辺方向)関係を示す。座屈波長は、実験前 の試験体全長から実験終了後の試験体におい て座屈が生じていない部分の長さを差し引く ことにより求めた。なお偏心圧縮実験の試験体 については、圧縮側フランジとなる面のみ計測 を行なった。なお座屈波長は必ずしも平行では なく、ある程度の誤差を含んでいるため、傾向 のみ検討した。

中心圧縮試験体では、短辺の長さ(幅厚比) による座屈波長の傾向はあまり認められない。 偏心圧縮試験体において、強軸曲げ試験体で

		幅	せい	板厚	局部座屈波長	L _b /B	L _b /D
		B(mm)	D(mm)	t(mm)	L _b (mm)	(長辺)	(短辺)
	150×150	150	150	4.22	122	0.81	0.81
中心圧縮	150×100	150	100	4.24	97	0.64	0.97
	150×75	150	75	4.16	116	0.77	1.54
偏心圧縮	150×150	151	151	4.22	125	0.83	0.83
	150×100 強軸	150	100	4.24	106	0.71	1.06
	150×100 弱軸	150	100	4.24	115	0.77	1.15
	150×75 強軸	150	75	4.16	83	0.55	1.11
	150×75 弱軸	150	75	4.16	122	0.81	1.63

表-6 座屈波長

図-7 座屈波長一幅厚比関係

は短辺の長さ(幅厚比)により座屈波長が変化 し、短辺の長さが短く(幅厚比が小さく)なる ほど座屈波長も短くなる傾向がある。

一方弱軸曲げ試験体では、短辺の長さ(幅厚 比)による座屈波長の変化は認められない。

このことは、偏心圧縮を受ける鋼管の座屈波 長は、圧縮となる板の幅(幅厚比)による影響 が大きいことを表している。

4 まとめ

長辺が等しく短辺を変化させた長方形鋼管 の中心圧縮・偏心圧縮実験より、以下の知見を 得た。

- ・曲げ圧縮を受ける場合,正方形鋼管では局 部座屈により計算曲げ耐力に達しない試験 体が,短辺が短くなることにより曲げ方向 (強軸曲げ,弱軸曲げ)に関わらず計算曲げ 耐力に達した。
- ・ 曲げ圧縮を受ける場合,短辺が短くなることにより曲げ方向(強軸曲げ,弱軸曲げ)に関わらず最大耐力に達する変形量が大きくなった。
- ・ 座屈波長は、中心圧縮では差違は認められないが、曲げ圧縮を受ける場合、圧縮側となる板の幅(幅厚比)による影響が大きい。

今後はひずみ分布等,詳細に実験結果を分析 するとともに,柱の曲げ実験などにより検討を 進める予定である。

「参考文献」

- 長崎透,岡修平,藤本利昭,コンクリート充 填長方形鋼管短柱の構造性能に関する研究, 構造工学論文集, Vol.61B, pp133-140, 2015.3
- 2) 長崎透, 荒井望, 藤本利昭, コンクリート充 填長方形鋼管の構造性能に関する実験的研 究その1~その2, 日本建築学会大会学術講 演梗概集, pp.1537-1540, 2013.8
- 3)長崎透,荒井望,藤本利昭,コンクリート充 填長方形鋼管の構造性能に関する実験的研 究その3~その5,日本建築学会大会学術講 演梗概集,pp.1421-1426,2014.9
- 岡修平,藤本利昭,長方形CFT柱―鉄骨梁 接合部パネルの構造性能に関する研究,日 本建築学会大会学術講演梗概集,pp.1419-1420,2015.9
- 5) 藤本利昭,田中宏和,平出亨,竹中啓之,断 面形状を考慮した角形CFT柱の設計式,日 本建築学会技術報告集,Vol.15,No.31, pp757-760,2009.10

-34 -