気・液界面反応場を用いた水質浄化技術の開発

-O₃ファインバブルによるビスフェノール A の分解促進-

日大生産工(院) ○徐 康健 日大生産工 和田 善成 日秋 俊彦 松本 真和

1 緒言

液相中の有機物の酸化分解に用いられるO₃は, 有機物の電子密度の高い部位(二重結合など)と の反応性が高く,電子吸引性の高い置換基を持つ 物質や飽和脂肪族との反応性は乏しいことが知 られている。一方,O₃とOHとの反応より逐次的 に生じる多種の酸素種活性種(OH・, OOH・, O2・など)は、有機物の置換基や結合様式によら ず速やかに反応することから,酸素種活性種を効 率的に生成可能な手法の開発が望まれている。そ こで、本研究ではO3をファインバブルとして液相 内に導入し,酸素種活性種の生成および難分解性 有機物の分解を促進する技術の開発を行った。気 泡の微細化がもたらす現象・効果として, i) 気-液界面積の増大にともなう物質移動・反応吸収の 促進, ii) 浮力減少にともなう気泡の平均滞留時 間の増加, iii) 気泡の表面電位による気-液界面で の相互作用が挙げられる」。したがって、反応系 内にO3ファインバブルを導入することで、O3の溶 解促進に加え、気-液界面近傍に濃縮されるOH⁻ とO3の反応による酸素種活性種の生成促進が期 待できる。本稿では、気泡の微細化が酸素種活性 種の生成およびビスフェノールA (BPA)の分解 に及ぼす影響について述べる。

2 実験装置および方法

2.1 実験装置

実験装置の概要を **Fig.1** に示す。 $O_2 \approx O_2 \approx \mu$ 供給速度が 0.56 mmol/(*l*·min)で誘電体バリア放 電反応器(昭和システムサービス社製)に供給 し,一次電圧を 60 V で印加した。得られる O_3 モル供給速度は 0.028 mmol/(*l*·min)である。生 成した O_3/O_2 混合ガスを平均気泡径(d_{bbl})が 50 µm のファインバブルとして液相に連続供給し た。ファインバブルはモーターの回転によって インペラー背面に生じる負圧とインペラーの剪 断力を利用した自吸式装置(Tech Ind.製)を用 いて発生させた。また,比較として、 d_{bbl} が 200, 900, 2000 または 5000 µm の気泡は分散式装置(細 孔径は 65 - 100 µm)を用いて発生させた。撹拌速度 はいずれの装置においても 1500 min⁻¹である。

 ① Gas flow meter
 ② Dielectric Barrier Discharge (DBD) reactor

 ③ Transformer
 ④ Fine bubble generator
 ⑤ pH meter

 ⑥ Reaction vessel
 ⑦ Gas exit

2.2 BPAの分解

初濃度が0.2 mmol/lのBPA水溶液2 lに d_{bbl} が異なる O_3/O_2 気泡を80 min連続供給した。残存BPA濃度(C_{BPA}),分解生成物であるヒドロキノン(HQ)およびヒドロキシアセトフェノン(HAP)濃度(C_{HQP})をHPLC(JASCO Co. 製)で測定した。

2.3 全酸素種活性種濃度およびOH・濃度の 測定

初濃度が 10.0 mmol/l のサリチル酸(SA) 水 溶液 2 *l*に O₃/O₂気泡を連続供給した。SA とヒ ドロキシラジカル (OH・)の 1:1 での反応によ り生成される 2,3-ジヒドロキシ安息香酸の濃度 (C_{DHBA})はOH・濃度 ($C_{\text{OH}-}$)と等しいと仮定した ²⁾。 C_{DHBA} は HPLC を用いて定量した。また, O₃/O₂気泡を 2*l*のイオン交換水に連続供給した 際,比色 O₃ 濃度計 (O₃-3F, 笠原理化製)を用 いて測定された O₃ 濃度を酸素種活性種の全濃 度 (C_{OS})と見なした。

- 3 実験結果および考察
- 3.1 平均気泡径を変化させた場合の残存BPA 濃度および分解生成物濃度の時間変化 BPA 水溶液に O₃/O₂気泡を連続供給した場合

の C_{BPA} の時間変化を Fig. 2 に示す。また、分解 生成物として、HPLC により定量が可能であっ た C_{HQ} および C_{HAP} の時間変化も示す。 d_{bbl} が

Development of Water Purification Technology Using Gas-liquid Interfaces - Acceleration of Bisphenol A Degradation by O₃ Fine Bubbles -

Kangjian XU, Yoshinari WADA, Toshihiko HIAKI and Masakazu MATSUMOTO

5000 μ m では、20 min 以降において HQ と HAP の生成が確認され、80 min で約40 %の BPA が 分解された。 d_{bbl} を 900 μ m に減少させると、BPA 濃度の減少が顕著となり、HQ と HAP の濃度が 極大値を示した。さらに、 d_{bbl} が 50 μ m では、 80 min でほぼ 100 %の BPA が分解され、HQ と HAP の濃度の極大値に到達するまでの時間が 短縮された。これより、O₃気泡の微細化は BPA のみならず、分解生成物である HQ および HAP の分解も促進することがわかる。

Fig. 2 Time changes in C_{BPA} , C_{HQ} and C_{HAP}

3.2 気泡の微細化が酸素種活性種の生成に 及ぼす影響

イオン交換水またはSA水溶液に d_{bbl} が異な O_3/O_2 気泡を連続供給した場合の C_{OS} および C_{OH} の時間変化 をFig.3に示す。供給時間が同一下では、 d_{bbl} の減少に ともない C_{OS} 、 C_{OH} .がともに増大した。初期における C_{OH} の増加速度(r_{OH} .)は、 d_{bbl} が5000,50 µmでそれ ぞれ0.2、4.2 µmol/(l·min)であり、 d_{bbl} を1/100に低下さ せると C_{OH} .の増加速度は21倍に増加した。また、 C_{OS} の増加速度(r_{OS})は、 d_{bbl} を5000 µmから50 µmまで減少 させると11倍に増加した。このOH・の生成促進は、 気泡の微細化にともなう気-液界面近傍でのOH⁻の濃 縮に起因すると考えられる。

3.3 OH・生成割合と BPA 分解速度および HQ・ HAP の生成速度の関係

全酸素種活性種に対する OH・の生成割合 (r_{OH}./r_{OS})と BPA の分解速度(r_{BPA})および HQ と HAP の生成速度(r_{HQ}, r_{HAP})の関係を Fig. 4 に 示す。 r_{BPA}, r_{HQ} および r_{HAP} は,各濃度の時間 変化における初期の傾きより算出した。 r_{BPA} は r_{OH} ・ $/r_{OS}$ の増加にともない増大した。また, HQ および HAP は, O₃ と BPA との反応よりも, OH・と BPA の反応で生成しやすい³ことから, O₃気泡の微細化にともなう BPA の分解促進は OH・の生成割合の増大に起因すると推察される。

Fig. 4 Effects of r_{OH} . $/r_{OS}$ on r_{BPA} , r_{HQ} and r_{HAP}

「参考文献」

- K. Onoe and M. Matsumoto, Micro- and Nanobubbles: Fundamentals and Applications (H. Tsuge Ed.), Singapore, 207-215 (2014).
- D. R. Mccabe *et al.*, J. Chromatogr B, **691**, 23-32 (1997).
- R. A. Torres *et al.*, Ultrason Sonchem, **15**, 605-611(2008).