中日本ハイウェイ・エンジニアリンク、東京㈱ 〇高野 真希子, 生産工 阿部 忠

18

4.5

1. はじめに

長期間供用された道路橋 RC 床版は,疲労損傷 に加え,建設環境条件による劣化が進行し,供用 開始時のコンクリート圧縮強度が低下している可 能性がある.また、撤去床版の観察から、橋梁の コンクリート床版内部の鉄筋位置付近に水平ひび 割れが生じていることが確認されている. その発 生と擦り磨きにより拡大がもたらすコンクリート のせん断応力の伝達性能の低下は、床版の曲げ剛 性を大幅に低下させる問題があり,床版内部の状 態を把握する必要が高まっている. そこで筆者ら は、床版内部の連続したコンクリートの強度を診 断する小口径コア型コンクリート強度診断試験機 1)(以下,試験機とする)を開発した.さらにこの 試験機を応用したコンクリート内部を診断する「コ ンクリート構造部材の柱状サンプル採取方法」²⁾を 提案している. そこで本研究は、本試験機を用い て、コンクリートの表面から深さ方向のコンクリ ートの圧縮強度の推定および撤去した実橋 RC 床 版を用いて水平ひび割れの発生状況に関する診断 技術につて検証する.

2. 小口径コア型コンクリート強度診断試験¹⁾

コンクリートの表面から深さ方向に切削する際 の切削エネルギーを得て、コンクリートの圧縮強 度を評価する方法である. 小口径コア型コンクリ ート強度診断試験装置を図ー1に示す.

2.1 切削エネルギーの算定式および強度推定

本試験機がコンクリートを 1.0mm 切削するため の鉛直切削エネルギーの累積(Σ E_F)および回転切 削エネルギーの累積(Σ Em)を算定し、これらの合 計切削エネルギー(Σ E)によってコンクリートの 圧縮強度を推定するものである. 合計切削エネル ギー(ΣE)は式(1)として与えられる.

 $\Sigma E = \Sigma (E_F + E_M) = \Sigma \{ (F_z \times \Delta L) + (M_z \times \Delta \theta) \}$ (1) ここに、 Σ E:合計切削エネルギー(J), E_F:鉛 直切削エネルギー(J), Em:回転切削エネルギー(J), Fz: 作用荷重(N), Δ L: 切削深さ方向の変位 (= Δ L_{n+1}- Δ L_n, Δ L_{n+1}: n+1 回目の深さ(mm), Δ L_n :n回目の深さ(mm), Mz:切削トルク (=A × 0.9511, A:電流) (Nm), Δ θ:計測間隔におけ る回転角度(=回転数×2 π/60)(red/s)

図-2ビット 図-1 試験機一式 表-1 コンクリートの配合条件 スランプ Air W/Cs/a 単位重量 (kg/m³) (cm) (%) (%) (%) С W S G AD 58.5 48.3 313 3.13

186

840 940

2.2 コンクリートの使用材料および実験方法

(1) 使用材料 本試験機を用いて圧縮強度を評価 するコンクリート試験体の材料には、普通セメン トに 5mm 以下の砕砂, 最大寸法 10mm の骨材を 用いる. コンクリートの要求性能は圧縮強度 24N/mm²程度確保できる配合条件(表-1)とす る. コンクリート試験体の寸法は幅 1,200×1,200 mm, 厚さ200mm とする.

供試体上面に本試験機を設置す (2)実験方法 る. コアを切削するビットの寸法は内径 φ25mm 厚さ 3.0mm, 高さ 300mm とする(図-2). また, エアーコンプレッサーによる押力は 0.8MPa(荷重 200N 程度) で作用させる. 200mm の切削に要す る時間の最大を 5min, 収録データ数を 3000 デー タと設定する.なお、モータの回転数は1500回/min とした.

この実験条件により、切削時間(sec)、作用荷重 (N), 表面からの切削深さ(mm), 電流値(A)のデー タを動的に計測し、合計切削エネルギー Σ E を式 (1)より評価する.

2.3 結果および考察

(1)作用荷重・時間・電流 コンクリート表面か ら深さ 200mm までの深さと作用荷重 F=(N)の関係 を図-3に示す.荷重は 225N ~ 238N の範囲で作 用しており,安定した制御がなされていることが 確認できる. また, 深さ 200mm まで切削する

Try of a new technology about internal investigation of RC slabs by Makiko TAKANO and Tadashi ABE

図-6 合計エネルギーと距離 図-7 圧縮強度と合計エネルギー 図-8圧縮強度と合計エネルギー

表-2 コアの圧縮試験による圧縮強度							
呼び強度		直径(D)	高さH	H/D	補正係数	最大荷重	圧縮強度
24 N/mm ²		(mm)	(mm)			(kN):P	(N/mm^2)
1体目	1	24.43	47.45	1.94	0.995	11.22	23.84
	2	24.48	48.23	1.97	0.997	11.02	23.36
	3	24.50	48.85	1.99	0.999	11.60	24.59
	4	24.60	48.60	1.97	0.997	11.80	24.76
	平均						24.14
2体目	1	24.45	46.10	1.88	0.990	11.32	23.88
	2	24.48	46.18	1.88	0.990	10.99	23.14
	3	24.60	47.63	1.93	0.994	11.50	24.06
	4	24.58	47.05	1.91	0.992	11.61	24.29
	平均						23.84

際の所要時間(sec)は 150.2sec であり,図-4に 示すとおりほぼ線形的に増加している.次に, 電流値(A)と表面からの距離(mm)の関係を図-5 に示す.初期電流値は 1.55A と高いが,これは コンクリート表面にコア・ドリルが接触した際 に負荷が大きくなり,電流が高い結果となる. その後徐々に安定し,1.22A ~ 1.1A の範囲での 増減となった.この増減が,回転エネルギーに 大きく影響する.このような深さ方向の各層の データの増減から,各層においてコンクリート の圧縮強度が変化しているものと推定できる.

(2) 合計切削エネルギー *ΣE* 収録した作用荷 重,時間,電流(図-3,4,5)を用いて式(1) より合計切削エネルギー *ΣE*を算定し図-6に示 す.なお,図-6には鉛直切削エネルギーの累 積(*ΣE_t*)および回転切削エネルギーの累積(*ΣE_t*) も併記した.図-6より 1mm 切削する際の合計 エネルギーは,1mm から 50mm の平均が 345N, 50~100mm の平均は 340N,100~150mm の 平均は 357N,150~200mm の平均は 360N で ある.

(3) コンクリートの圧縮強度

コンクリートの圧縮試験は, 採取したφ 25mm×200mm の小口径コアを 50mm ごとに切 断し、φ 25mm×50mm の円柱供試体を4本製作 した.その後、小径コア専用の万能試験機を用 いて圧縮試験を行った.2本の供試体の圧縮試 験の結果を**表-2**に示す.

(4) 圧縮強度と合計切削エネルギーの関係

コンクリートの圧縮強度と合計切削エネルギ ーの関係を図-7に示す.合計切削エネルギー *SE* を適用したコンクリートの圧縮強度 *f*。の推定式 を式(2)として与える.

$$f_c = 0.3396 \times \Sigma E^{(0.726)}$$
 (2)

ここに、 $f_c: コンクリートの圧縮強度$ (N/mm²)、 $\Sigma E:$ 合計切削エネルギー(J)

(5) 合計切削エネルギーから算定される圧縮 強度

深さ1.0mm ごとの圧縮強度および1本のコア から50mm ごとに切断した小口径コアの圧縮試 験による圧縮強度および推定式(2)より得られ た圧縮強度をそれぞれ図-8に示す.コンクリ ートの圧縮強度は深さ1.0mm ごとに増減が著し いが50mm ごとに平均した合計エネルギー切削 エネルギーとコンクリート試験による圧縮強度 はかなり近似している.よって,合計切削エネ ルギーは深さ方向の脆弱箇所が推定でき,50mm ごとに合計切削エネルギーを評価して,圧縮強 度を算定することで,実験値との整合正が評価 できる結果となった.

3. 調査実施内容および各種試験方法

水平ひび割れが発生している実橋 RC 床版を 試験体とした調査においては,既往の点検方法 に加えて新技術を採用し,補修計画や維持管理 を行うための情報を得ることを目的に,コンク リート内部の変状調査を行った.

図-9 ハンマー打診によるひび割れ範囲

3.1 水平ひび割れの目視確認とハンマー打診

(1) 点検概要 目視と打音法は点検の基本で あるが、微細なひび割れの確認においては打撃方 法に工夫が必要である.例えば、0.2mm 未満のひ び割れを目視するためには、アセトン等の揮発性 の高い液体を塗布する.ハンマー打診は、打音の 確認のみでなく、ハンマーの反発状況を確認する ことも重要である.

(2) 調査結果 浅い位置(上側鉄筋位置=深 さ 40 ~ 50mm 程度)の変状でもある程度強い打 撃が必要である.また,浅い位置の水平ひび割れ は,幅 0.5mm 程度以下で「空洞化」に至らないも のは,ハンマー打診による検出が困難である.ハ ンマー打診によるひび割れ範囲を検証した結果を 図-9に示す.

3.2 衝撃弾性波法

衝撃弾性波法は、コンクリート表面に設置した センサーの近傍を打撃し、コンクリート中を伝播 する弾性波の伝播速度および反射時間を測定して、 内部の空洞等の深さを計測する非破壊調査である.

3.3 電磁波レーダ法

(1)調査概要 電磁波レーダ法は、電磁波をコ ンクリート表面に向けて放射すると、電磁波がコ ンクリートと電気的性質の異なる物質すなわち、 鉄筋や空洞位置との境界面で反射され、受信され る.この送信から受信に到るまでの時間から、反 射物体までの距離を測定する方法である.主に、 中性化調査や塩分浸透量調査でのコアドリルでの 削孔位置を決定する際に用いている.近年では専 用の大型計測器を使用して、舗装とコンクリート 床版の界面に発生した劣化・空洞等の調査にも採 用されている.

(2) 調査結果 試験体の断面に露出している鉄 筋においても探知不能や水平ひび割れを判読する ことができない場合もある.これら結果から,非 破壊調査により判断することは難しく,他の点検 や調査と複合的に取り扱う必要があることを確 認した.

3.4 各種試験による診断

調査実施内容および各種試験方法としてハン

図-11 小口径コアによる床版内部の調査手法

マー打診,衝撃弾性波法および電磁波レーダ法 でのひび割れ確認試験においては適切な水平ひ び割れ発生の確認には至らない結果となった.

4. 柱状サンプル採取方法

4.1 小口径コアによる床版内部の調査手法²⁰

採取コアにより内部状況を確認する方法は一 般的に行われていているが、コア径により床版 へ不要なダメージを与えることや図-10に示す ような内部損傷状況によりコアの採取が困難な 場合がある.そこで、内部の変状部に蛍光塗料 を混入した浸透性接着剤を注入し、コンクリー ト壁面を強固にすると同時にひび割れ発生位置 に浸透させ、変状位置の形状寸法を保持すると ともに、採取したコア表面の視認性を向上させ る手法を提案する.診断手順を図-11に示す.

はじめに、コアドリル装置を試験体に設置し (図-11①)、φ 10mm のコアを穿孔する(図-11②). 次に、コア内を清掃し(図-11③)、浸 透性接着剤に蛍光塗料を混入し、専用の注入装 置を用いて接着剤を圧入する(図-11④). 次 に、接着剤の強度発現後、同位置をφ 25mm の ドリルにより穿孔し(図-11⑤)、コアを採取 する(図-11⑥).

4.2 小口径コアによる床版内部の調査提案

(1)調査概要 コンクリート内部のひび割 れ状況を調査する新技術である.診断方法は図 -11に示す手順で行った.また,棒状のスキャ ナを用いてコア内面の調査を行った画像との比 較検討も行った.棒状スキャナを 4 25mm の削 孔内部に挿入し,削孔壁面の画像を撮影するも のである.

図-12 孔内面の可視画像と採取コアの表面観察結果の比較

(2) 調査結果 本提案による手法により採取 した柱状サンプルおよび棒状スキャナによる画 像と柱状サンプルの表面観察結果の一例を図-12に示す.

棒状スキャナによるひび割れ診断では,空隙 や骨材とモルタルの付着不良による空隙がみら れる.一方,蛍光剤を混入した浸透性接着剤を 注入した柱状サンプルに,ブラックライト(紫 外線)を照射し,柱状サンプル表面のひび割れ を診断した結果,孔内面スキャナでは判別でき ない微細ひび割れまでを確認することが可能と なった.

(3)施工上の留意点 今回の実験により施工 に関して以下の課題が確認された.

浸透性接着剤を注入するφ 10mm のコアを穿 孔する場合は、打音式のドリルは穿孔時微細な ひび割れの発生が懸念されることから、湿式式 のコアドリルを用いる必要がある.なお、乾式 の場合は穿孔時発生するコンクリート粉体が水 平ひびわれに侵入し、浸透性接着剤の浸透が阻 害されるなどが懸念される.次に、コンクリー ト表面にひび割れが確認された場合は浸透性接 着剤の漏洩を防止するために、シール材で完全 に覆う必要がある.また、φ 10mm の孔に浸透 性接着剤を注入する場合は低圧入によりひび割 れに浸透させる.下方かの注入の場合は、真空 状態となり、接着剤が圧入されないことから空 気孔を設ける必要があると考える.

5. まとめ

(1)「小口径コア型コンクリート強度診断試験装

置」を用いて、切削時間、作用荷重、表面からの 深さ方向の切削距離、電流値を適切に取得できた. また、切削時の鉛直および回転エネルギーの合計 切削エネルギーと採取コアの圧縮強度値より圧縮 強度と合計エネルギーの相間式(式(2))を導くこと ができた.

(2)合計切削エネルギー *ΣE* を提案式(2)に適用 することで切削層ごとのコンクリートの圧縮強 度の評価が可能であることから,劣化したコン クリートの内部強度の診断が可能となった. 今 後のデータの蓄積により提案式の精度向上を図る ことができると考える.

(3) 床版内部の損傷を打音や電磁波レーダ等の 非破壊検査単独で判断することは難しいことが 確認できた.

(4)新技術である「コンクリート構造部材の柱状 サンプル採取方法」によるコンクリート床版の 内部変状確認調査は、床版厚さ全幅の内部変状 の発生位置や寸法を極力見落とすことなく把握 できる有効な調査技術であると考えられる.今 回の実験では、ひび割れ等の視認性向上等,目 標としていた良好な結果が得られた.

[参考文献]

1) 阿部忠,高野真希子:コンクリート構造部材 の深さ方向性状測定方法及び装置,特許弟 6093951号

2)阿部忠,大窪克己,高野真希子:コンクリート構造部材の柱状サンプル採取方法,特願 2017-130224