渦電流探傷⊖プローブを用いた応力腐食割れの深さ評価の検討

1 はじめに

これまでに、発電プラントなどのプラント構 造物で応力腐食割れ(以降 SCC)や熱疲労割れ といった微小なきずが発生する事例が報告さ れている。これらのきずに対して、雑音が小さ く、S/N高くきず検出が可能なΘプローブを適 用した渦電流探傷試験を行い、きずの検出が可 能であるという報告を行った^{1,2)}。また、得ら れたきず信号から信号位相を求め、それを利用 したきず深さの評価を行った。その結果、熱疲 労割れであれば最大きず深さに対して誤差 +10%程度で評価が可能である。しかし、SCC の場合、最大きず深さに対する信号位相の大き さがばらつくので、きず深さ評価が困難であっ た。信号位相がばらつく原因として SCC の特 徴である、複数のきずが隣接して存在すること や断面での部分接触などが挙げられる。そこで、 これらの特徴を模した解析モデルを作成し、有 限要素法を用いた数値解析を行い、信号位相に どのような影響があるか検討を行った。

2 渦電流探傷 Θプローブ

2.1 Θプローブの構造

図1にΘプローブの構造を示す。Θプローブは、 円形横置きの励磁コイルと矩形縦置きの検出コ イルによって構成される。励磁コイルは、試験体 内に巻線方向と同方向に同心円状の渦電流を誘 導する。検出コイルは、巻線方向と同方向に流れ る渦電流の磁束を検出する。

日大生産工(院) 〇本宮 寛憲 日大生産工 小山 潔

2.2 Θプローブの探傷原理

図 2 に Θ プローブの探傷原理を示す。図 2(a) のように、検出コイルがきずの左側に位置する場 合、きずを避けて流れた渦電流が、検出コイルの 近傍を巻線方向と平行に流れるので、起電力が発 生する。きずの真上に検出コイルが位置する場合、 きずを中心に渦電流が左右対称に誘導されるの で、検出コイルを貫く磁束の総和が零になる。し たがって、検出コイルに起電力が発生しない。な お、検出コイルが、きずの右側に位置する場合は、 左側に位置する場合と、逆極性の起電力が発生す

Eddy current

(a)きずの左側の場合 (b)きずの真上の場合
 図2 Θプローブの探傷原理

3 実測に用いた SCC の断面図と表面性状 実測に用いた SCC の断面図と表面性状を図 3,4 に示す。図 3(a)を見ると、きずの深さが同程度 の SCC が 2 つ隣接して存在している。また、2 つ

Study on depth estimation of stress corrosion cracking using eddy current Θ probe

Tomonori HONGU, Kiyoshi KOYAMA

の SCC は共に表面から約 0.5mm 程度直進した後に、 蛇行しながら斜めに進展しており、深さ 2mm 以降 からは幅が徐々に狭くなり、断面での接触が見ら れる。図 3(b)を見ると、深さが異なる SCC が 5 つ存在している。それぞれの深さは①0.2mm 程度 ② 0.3mm 程度③3.76mm 程度④2.47mm 程度⑤ 1.11mm 程度であり、蛇行しながら斜めに進展し ている。一番深い③は 2mm 以降では幅が狭くなり、 断面での接触が見られる。

図 4(a)を見ると、SCC が 2 つ並んで存在してお り、共に蛇行しながら直線的に割れていることが 分かる。図 4(b)を見ると弓なりに割れている SCC が 2 つ見える。また、図中赤丸で囲んだ箇所のよ うに割れが分岐している部分が見られ、部分的に 図 3 (b)のように 5 つの SCC が並んで存在してい る。SCC の解析モデルは SCC1 と SCC2 の特徴を模 して作成した。

4 解析条件と解析モデル

試験体モデルの寸法は160×160×12mmと し、導電率を3.0×10⁶S/m、比透磁率を1.0と した。プローブの寸法は、励磁コイルの外径を 9mm、内径を 7mm、巻線断面積 1mm²とし、検 出コイルでは矩形縦置きで縦 7mm、横 6.8mm、
巻線断面積 1mm²とし、試験周波数を 100kHz、
リフトオフを 0.5mm とした。

きず形状が単純な放電加工(以降 EDM)きず を模した解析モデルを作成し、きずの深さ、 長さ及び形状が異なる場合について解析を 行った。図5に解析に用いた EDM モデルの断 面図を示す。きずの形状は矩形型、お椀型及び 楔形の3種類とし、作成した解析モデルのきず 寸法を表1に示す。

解析に用いたSCCモデルの断面図を図6に示 す。図中の自部分は断面接触なし、黒部分は断 面接触ありを示している。なお、きずの一部に 導電率を付与することで断面接触を模してお り、試験体の導電率の5%程度を付与した³⁾。 図6(a)はSCC1を模し、同じ深さのきずが2つ 隣接しており、それぞれの深さを4mmとした。 図6(b)はSCC2を模し、深さが異なるきずが5 つ隣接しており、それぞれの深さは左から 0.33,0.33,3.66,2.66,1.0mmとした。なお、実 際のSCCは斜めに割れているが、解析では単純 化のために直線的な割れとしてモデル化して いる。

表	1	EDN	[モ	テ	゛ルの	き	ず	`寸法	
---	---	-----	----	---	-----	---	---	-----	--

		U	nit(mm)
Model number	length	depth	width
Rectangle1	25.0	1.0	0.4
Rectangle2	25.0	2.0	0.4
Rectangle3	25.0	4.0	0.4
Rectangle4	25.0	8.0	0.4
Rectangle5	15.0	4.0	0.4
Rectangle6	10.0	4.0	0.4
Bowl	25.0	8.0	0.4
Wedge	25.0	8.0	0.4

5 解析結果

5.1 EDM モデルのきず深さ評価の検討

図 7(a)にきずの形状が矩形型で長さ(25mm)及 び幅(0.4mm)を一定とし、深さを 1,2,4,8mm と した場合の信号パターンを示す。きずの深さが深 くなると信号パターンが大きくなり、パターンの 傾きが時計回りに傾くことが分かる。

図 7(b)にきずの形状が矩形型で深さ(4mm)及 び幅(0.4mm)を一定とし、長さを 10,15,25mm と した場合の信号パターンを示す。きずの長さが長 くなると信号パターンが大きくなり、パターンの 傾きが時計回りに傾くことが分かる。

図 7(c)に長さ(25mm)、最大きず深さ(8mm)及 び幅(0.4mm)を一定とし、きずの形状が矩形型、 お椀型及び楔型の場合の信号パターンを示す。き ずの形状がお椀型や楔型のようにきず深さが一 定でない場合、きず深さが一定の矩形型と比べて 信号パターンが反時計回りに傾くことが分かる。

図8に最大きず深さに対する信号位相を示す。 きずが深くなると信号位相が小さくなることが 分かる。また、励磁コイルの外径9mmに対して きずの長さが10mmの場合+10%程度信号位相 が大きくなる。また、最大きず深さが同じでも、 きず深さが一定でない場合、矩形型と比べて+5% 程度信号位相が大きくなることが分かった。なお、 実測結果と解析結果とで信号パターンや位相の 変化の傾向によい一致が得られたことを確認し ている。

図8EDM モデルの最大きず深さに対する信号位相

5.2 SCC モデルのきず深さ評価の検討

-199-

実測で用いた SCC の特徴を模したモデルを作 成し、信号位相にどのような影響があるか検討を 行った。図 9 に SCC モデルの信号パターンを示 す。なお、図 9(a)(b)中の赤線は Rectangle3 の信 号パターンである。図 9 (a)に SCC1 モデルの信号 パターンを示す。2 つのきずが隣接し、断面接触 がある場合、Rectangle3 モデルと比べて、信号パ ターンは少し大きくなり、僅かに反時計回りに傾 くことが分かる。

図 9 (b)に SCC2 モデルの信号パターンを示す。 5 つのきずが隣接し、断面接触がある場合、 Rectangle3 モデルと比べて信号パターンの大き さは同程度だが、反時計回りに傾くことが分かる。

図 10 に最大きず深さに対する信号位相を示す。 図中の黒線は Rectangle1~4 モデルから求めた、 検定曲線である。検定曲線と比べて、SCC モデル の信号位相は大きくなっていることが分かる。し たがって、断面での部分接触やきずが複数存在し ていることで信号位相に影響を与える一因であ ることが考えられる。

6 まとめ

SCC の特徴を模した解析モデルを作成し、有限 要素法を用いた数値解析を行い、SCC の深さ評価 について検討を行った。その結果、きずの深さが 一定でない形状、断面での部分接触や複数のきず が隣接して存在している場合、接触がない単純形 状のきずと比べて、信号位相が大きくなるので、 最大きず深さに対する信号位相がばらつく一因 であることが分かった。今後は、解析に用いた SCC モデルのきず形状、内部での分岐や付与する 導電率を変えて同様の検討を行いたいと考えて いる。

図9SCC モデルの信号パターン

図 10 SCC モデルの最大きず深さに対する 信号位相

「参考文献」

 1) 星川 洋,小山 潔,柄澤 英之:リフト オフ雑音が発生しない渦電流探傷用新型上 置 プローブに関する研究,非破壊検 査,50(11)(2001).pp.736-742.

2)本宮寛憲,小山潔: 渦電流探傷試験による 応力腐食割れ・熱疲労割れの検出と評価に関 する研究,第 17 回表面探傷シンポジウム講 演論文集,表面探傷技術による健全性診 断,(2014).pp23-26.

3)程 衛英,古村 一郎,芝 光晴,兼本 茂:渦電流探傷によるき裂面の部分接触を 伴う応力腐食割れの深さサイジング:溶 接・非破壊検査技術センター 技術レビュー vol.2,(2006).pp.19-26.