## キャプチャセーフベクトルの活性化ファンアウトフリー領域解析

日大生産工(学部) ○三澤 健一郎 日大生産工(院) 越智 小百合 日大生産工 山崎 紘史 日大生産工 細川 利典 京産大 吉村 正義

#### 1. 序論

近年,半導体微細化技術の発達に伴い,大規模集積 回路(Large Scale Integrated Circuits: LSI)のテスト における実速度スキャンテストは必要不可欠な技術と なっている[1].一般に実速度スキャンテストの消費電 力は,LSI が通常動作する際の消費電力と比較して大 きくなることが知られている[2,3].実速度スキャンテ ストにおける消費電力は,テストベクトルをスキャン チェインに印加するシフトイン動作と,組合せ回路部 のテスト応答をスキャンアウトから出力するシフトア ウト動作により発生するシフト時消費電力[4]と,テス トベクトルに対する組合せ回路部のテスト応答をスキ ャン FF に取り込む際,スキャン FF の出力の論理値 が遷移することで発生するキャプチャ時消費電力[4] に分類できる.

過度なキャプチャ時消費電力による問題として,電 圧降下(IR ドロップ)[2]による誤テストが挙げられる。 また,過度なシフト時消費電力による問題として,発 熱による回路の熱破壊[5]が挙げられる.そのため, VLSI のテスト時消費電力の増大は歩留まり低下の原

因の一つとして挙げられる.したがって,歩留まりの 損失を抑制するために VLSI のテスト時消費電力の削 減が重要である.

本論文では、キャプチャ時消費電力に着目する。キ ャプチャ時消費電力削減のための手法としてテストデ ータを変更する手法[6-9]が提案されている.テストデ ータ変更による手法は、再テスト生成による手法[6,7]、 ドントケア割当てによる手法[8,9]に分類される.再テ スト生成による手法では、キャプチャアンセーフテス トベクトルと呼ばれる高消費電力テストベクトルに対 して,消費電力制約を満たすようにテストベクトルの 再生成を行う.しかしながら,再テスト生成に基づく 手法は,決定論的アルゴリズムに基づく手法が多く, テスト生成時間が激的に増加するという問題がある. ドントケア割当てによる手法は,LCP-Fill[8],P-Fill[9]などが挙げられる.これらの手法では,テスト パターン中のドントケア(X)に対して,キャプチャ動作 時の信号遷移数(launch switching activity:LSA)を削 減するための論理値を適切に割当てることにより,低 消費電力なテスト集合を生成する.

また,入力されたテスト集合からドントケアを判定 する手法としてドントケア判定法[10]が提案されてい る.ドントケア判定を適用することで生成されたドン トケアを含んだテストベクトルに対して,テストベク トル数の削減,消費電力の削減などの新たな特性を持 たせることが可能になる.文献[10]では,ドントケア ビットの分布を制御し,各テストベクトルのドントケ アビットを平均化する低消費電力指向ドントケア判定 法が提案されている.しかしながら,文献[10]は,ドン トケア判定フロー中に各テストベクトルの消費電力の 評価を考慮していない.

本論文では、キャプチャセーフテストベクトルの故 障伝搬経路を模倣したドントケア判定法を提案する. 提案手法では、テストベクトルの故障伝搬経路に着目 し、キャプチャセーフテストベクトルの故障伝搬経路 を模倣するようなドントケア判定を行う.第2章では、 VLSIの消費電力推定法を示す.第3章では、提案手 法のドントケア判定アルゴリズムを示す.第4章では、

### An Analysis of Sensitized Fanout Free Regions Using Capture Safe Test Vectors

Kenichirou MISAWA, Sayuri OCHI, Hiroshi YAMAZAKI, Toshinori HOSOKAWA and Masayoshi YOSHIMURA 予備実験結果を示し,第5章では本論文のまとめと今後の課題を示す.

#### 2. VLSI の消費電力推定

本論文では、キャプチャ電力を見積もる方法として、 重み付き信号遷移(Weighted Switching Activity: WSA)を採用する.以下にWSA値を求める式を示す.

 $WSA = \sum_{i=1}^{G} tran(g_i) \times (1 + fanout(g_i)) \quad (1)$ 

式(1)において、G は回路内に含まれる総ゲート数で ある. tran( $g_i$ )はゲート $g_i$ の出力値に遷移が発生してい る場合は 1 を返し、遷移が発生してない場合は 0 を返 す関数である. fanout( $g_i$ )はゲート $g_i$ の出力信号線の分 岐信号線数を返す関数である. また、1 は遷移が発生 したゲートの重み付けのために足し込まれる.

本論文では、キャプチャ時消費電力が WSA の閾値 以下のテストベクトルをキャプチャセーフテストベク トル、キャプチャ時消費電力が WSA の閾値を超える ようなテストベクトルをキャプチャアンセーフテスト ベクトルと定義する.

# キャプチャセーフテストベクトルの故障 伝搬経路を模倣したドントケア判定法 低消費電力化のための故障伝搬経路選択戦略

提案手法では、故障伝搬経路に着目する.ドントケ ア判定は故障シミュレーションによる内部信号線値の 計算後、外部出力から故障個所までの故障伝搬経路を 遡る.ひとつの故障がふたつ以上の外部出力への故障 伝搬経路を持つ場合、ただひとつの故障伝搬経路を選 択する.このとき、選択した故障伝搬経路によってド ントケア判定後のテストキューブが変わる.本提案手 法では、故障伝搬経路選択の際、キャプチャセーフテ ストベクトルで頻繁に故障が伝搬されやすい経路を選 択する.キャプチャセーフテストベクトルの故障伝搬 経路を模倣することで、故障を検出するための内部信 号線値が似るため、低消費電力なテストキューブが生 成できると考えられる.

#### 3.2 問題定式化

本節では、ドントケア判定問題の定式化を行う.ド ントケア判定では初期テスト集合 *T*と回路 *C*が入力 され、ドントケアを含むテスト集合 *XT*が出力される. *XT*は以下の問題の解を求めることにより導出される.<<問題定式化>

- 入力:初期テスト集合 T
- 出力:ドントケアを含むテスト集合 XT
- 制約:故障検出率の維持
- 最適化:XTの各テストキューブ中のドントケアを p-fill した時の各テストベクトル最大 WSA 値

の最小化

#### 3.3 低消費電力指向 X 判定全体フロー

本節では、提案手法の全体アルゴリズムについて説 明する. 与えられた初期テスト集合 Tから、ドントケ ア判定後のテスト集合 XTを得るまでの処理手順を説 明する. ここで入力は回路 Cと, 初期テスト集合 Tで ある.まず、ドントケア判定後のテスト集合を保存す る変数 ET, XT をそれぞれΦに初期化する(行 4, 5). 次に、初期テスト集合 Tに対して故障シミュレーショ ンを実行し、故障辞書 Dを算出する(行 6). Dを用い て, Tに含まれる各テストパターンt<sub>i</sub>に対して必須故 障の検出に必要な外部入力値を求め, ET に格納する (行 7-9). ET は必須故障の検出のみを保証したドント ケアを含むテスト集合であるが、偶発的に他の故障も 検出する可能性がある. そのため, ET に対して故障シ ミュレーションを実行し、未検出故障リスト Uを算出 する. (行 10). 未検出故障リスト Uに対して未検出故 障の検出に必要な外部入力値を求め, XT に格納する (行 11). XTを返し,終了する(行 14).

| 1.  | Don't_care_identification(C, T)                          |
|-----|----------------------------------------------------------|
| 2.  | C:circuit, T:initial_test_set;                           |
| 3.  | {                                                        |
| 4.  | $ET = \phi$ ;                                            |
| 5.  | $XT = \phi$ ;                                            |
| 6.  | $D = fault_simulation(C, T);$                            |
| 7.  | for each test_patern <i>t</i> <sub>i</sub> in <i>T</i> { |
| 8.  | $ET+=$ essential_X-filling(C, D, $t_i$ );                |
| 9.  | }                                                        |
| 10. | U=collect_undetected_fault(C, D, ET);                    |
| 11. | XT=low_capture_identification(C, U, ET, D);              |
| 12. | return XT;                                               |

#### 図 1. 低消費電力指向 X 判定全体アルゴリズム

#### 3.4 故障伝搬経路選択

本節では,図1の行11における故障伝搬経路の選 択方法について説明する.図2に故障伝搬経路選択の 例を示す.テストベクトルvに対して故障シミュレー ション後,故障fの2つの故障伝搬経路が得られた. 故障伝搬経路が複数存在する場合,それらのうちのひ とつを選択すればよい.キャプチャセーフテストベク トルの故障伝搬経路の情報を基に,どちらの故障伝搬 経路がキャプチャセーフテストベクトルで故障が伝搬 されやすいかを算出する.図3(b)の表は,キャプチャ セーフテストベクトルでの故障伝搬経路1,2の有無 を示している.故障伝搬経路1は3個,故障伝搬経路 2は1個のキャプチャセーフテストベクトルで故障が 伝搬されている.故障伝搬経路1がキャプチャセーフ テストベクトルで伝搬されやすいので,テストベクト ルッの故障伝搬経路は故障伝搬経路1を選択する.

| v. |              |         |          |     |         |         |
|----|--------------|---------|----------|-----|---------|---------|
| 0  |              | 故障伝搬経路1 |          | TP  | 故障伝搬経路1 | 故障伝搬経路2 |
| 0  | $f_{target}$ |         |          | TP1 | 0       | ×       |
| 1  | X            |         | <u> </u> | TP2 | 0       | ×       |
| 1  |              | 故障伝搬経路2 |          | TP3 | 0       | ×       |
| 0  |              |         |          | TP4 | ×       | 0       |
|    |              | (a)     |          |     | (b)     |         |

## 図 2. 故障伝搬経路選択の例 (a)故障 fに対する故障伝搬経路 (b)セーフパターンによる故障伝搬経路の結果

#### 3.5 未検出故障に対するドントケア判定

図3に図1の行11における未検出故障に対するド ントケア判定アルゴリズムを示す. WSA を用いた未 検出故障に対するドントケア判定の処理手順を説明す る.入力は回路 Cと、未検出故障リスト Uと、必須故 障の故障検出を保証したドントケアを含むテスト集合 *ET*と, 故障辞書 *D*である. まず, *XT*に *ET*を代入す る(行 6). 次に, テストパターンを一時的に保存する集 合 UTをΦに初期化する(行 7). 次に, 最小の WSA 値 を保持する変数 MWSA を無限大に初期化する(行 8). 次に、Uに含まれる未検出故障に対して行 10 から行 23 の処理を適用する(行 9). 検出回数が最小の未検出 故障 fを Uと Dから選択する(行 10). 選択した fを検 出可能なすべてのテストパターンを故障辞書 D から 算出し, UTに格納する(行 11). UTに含まれる各テス トパターンutiに対して,行 13 から行 21 の処理を適 用する(行 12). ut<sub>i</sub>に対して,故障 fの検出に必要な外 部入力値を算出し、ドントケアを含むテストパターン xut<sub>i</sub>を生成する(行 13). ここで、故障 f がut<sub>i</sub>の見逃し 故障[11]である場合,見逃し故障 fの検出に必要な外 部入力値を求め, xut<sub>i</sub>に格納する(行 14). xut<sub>i</sub>に対して,

P-fill を行い, 3 値のテストパターンから 2 値のテスト パターンを求める(行 15).  $xut_i$ の WSA 値を測定し, wsa に格納する(行 16). MWSA と wsa を比較し, wsa のほうが小さい場合は行 18 から行 21 の処理を適用す る(行 17). MWSA に wsa を代入し, MWSA を更新す る(行 18). 最小の WSA 値をもつテストパターンの ID を kに保存する(行 19). 最小の WSA 値をもつテスト パターン $xut_i$ を,同じテストパターン ID をもつテスト パターン $xut_i$ を,同じテストパターン ID をもつテスト パターン $xt_k$ に代入する(行 22).  $xt_k$ はさらなる故障を 検出する可能性があるので,  $xt_k$ に対して故障シミュレ ーションを実行し,未検出故障リスト Uを更新する(行 23). テスト集合 XTを返し,終了する(行 25).

| 1.  | low_capture_identification(C, U, ET, D)            |
|-----|----------------------------------------------------|
| 2.  | C:circuit, U:undetected_fault_list,                |
| 3.  | <pre>ET:essential_fault_detectable_test_set,</pre> |
| 4.  | D : fault_dictionary ;                             |
| 5.  | {                                                  |
| 6.  | XT = ET;                                           |
| 7.  | $UT = \phi$ ;                                      |
| 8.  | MWSA=∞;                                            |
| 9.  | while( <i>U</i> >0){                               |
| 10. | $a = sellect_fault(U, D);$                         |
| 11. | $UT = collect_testpattern(a, D);$                  |
| 12. | for each test pattern $ut_i$ in $UT$ {             |
| 13. | $xut_i = find_value(a, ut_i);$                     |
| 14. | $xut_i = missed_find_value(a, ut_i);$              |
| 15. | $p - fill(xut_i);$                                 |
| 16. | $wsa = calc_wsa(xut_i);$                           |
| 17. | if(MWSA>wsa){                                      |
| 18. | MWSA=wsa;                                          |
| 19. | K = i;                                             |
| 20. | }                                                  |
| 21. | }                                                  |
| 22. | $xt_k = xut_i;$                                    |
| 23. | $U = fault_simulation(C, xt_k, U);$                |
| 24. | }                                                  |
| 25. | return XT;                                         |
| 26  | ١                                                  |

## 図 3. 未検出故障に対するドントケア判定 アルゴリズム

#### 4. 予備実験結果

本章では、キャプチャセーフテストベクトルとキャ プチャアンセーフテストベクトルの故障が伝搬されや すい FFR の関係を解析する.故障が伝搬されやすい FFR の評価は活性化判定[12]を利用する.

式(4.1)に FFR が活性化されているか否かを判定す る関数を示す.式(4.1)において, $t_i$ はテスト集合のi番 目のテストベクトル, $ffr_m$ は対象回路における m 番 目の FFR を示す. $t_i$ の $ffr_m$ において, $ffr_m$ の入力信号 線が1本でも活性化されている場合, $ffr_m$ は活性化さ れているとする.式(4.1)では, $t_i$ の $ffr_m$ が活性化され

-129-

ている場合は1,それ以外の場合は0を返す.

 $X(t_i, ffr_m) = \begin{cases} 1 \ if \ ffr_m \ is \ sensitized \\ 0 \ otherwise \ (not \ sensitized) \end{cases} (4.1)$ 

式(4.2)に FFR の活性化率を算出する関数を示す. 式において, Tはテスト集合,  $N_T$ はTのテストベクト ル数,  $t_i$ はテスト集合 Tのi番目のテストベクトル,  $ffr_m$ は対象回路における m番目の FFR を示す.

$$A(ffr_m) = \frac{1}{N_T} \sum_{i=1}^{N_T} X(t_i, ffr_m)$$
(4.2)

予備実験について説明する.予備実験では,対象回 路を FFR 分割し,キャプチャセーフテストベクトル とキャプチャアンセーフテストベクトルの FFR 活性 化率を評価した.図4に ISCAS'89 ベンチマーク回路 のs5378の予備実験結果を示す.図4において,縦軸 はFFR 活性化率,横軸は各FFRのIDを表している. また,青色がキャプチャセーフテストベクトルを印可 した際の FFR 活性化率,赤色がキャプチャアンセー フテストベクトルを印可した際の FFR 活性化率を表 している.図4において,キャプチャセーフテストベ クトルを印可した際に活性化されやすい FFR とキャ プチャアンセーフテストベクトルを印可した際に関し て,活性化されやすい FFR に違いが生じることが確 認できた.





#### 5. まとめ

本論文では、キャプチャセーフテストベクトルの故 障伝搬経路を模倣したドントケア判定法を提案した. 予備実験では、キャプチャセーフテストベクトルとキ ャプチャアンセーフテストベクトルで活性化されやす い FFR に差異があることが確認できた.今後の課題 として,提案手法のプログラムを完成及び, ISCAS'ベンチマーク回路を用いた実験等が挙げられる.

#### 参考文献

- [1] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama and S. Kajihara, "Invisible Delay Quality SDQM Model Lights Up What Could Not Be Seen," Proc. ITC, Paper 47.1, 2005.
- [2] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash and M. Hachinger, "A case study of IR-drop in structured at-speed testing," *Proc. ITC*, pp. 1098-1104, 2003.
- [3] Y. Zorian, "A Distributed BIST Control Scheme for Complex VLSI Devices," Proc. VTS, pp. 4-9, 1993.
- [4] A.Krstic, and K-T.Cheng, Delay Fault Testing for VLSI Circuits, Springer, 1998
- [5] J.Song, H.Yi, D.Hwang, and S.Park "A Compression Improvement Technique for Low-Power Scan Test Data" IEEE Region 10 Conference TENCON, pp.1-4, 2006.
- [6] X. Wen, Y. Yamashita, S. Kajihara, L. -T. Wang, K. K. Saluja and K. Kinoshita, "Low-Capture-Power Test Generation for Scan Testing," *Proc. VTS*, pp. 265-270, 2005.
- [7] Y. Yamato, X. Wen, K. Miyase, H. Furukawa and S. Kajihara, "A GA-Based Method for High-Quality X-Filling to Reduce Launch Switching Activity in At-Speed Scan Testing," *Proc. IEEE PRDC*, pp. 81-86, 2009.
- [8] X.Wen,H.Yamashita,S.kajihara,L.T Wang,Ko Saltta,and K.Kinoshita, "On low-caputure-power test generation for scan testing" Proc.VLSI Test Symp.(2005)pp.265-270,2005
- [9] Xiaoqing Wen, Yoshiyuki Yamashita, Seiji Kajihara, Laung-Terng Wang, Kewal K. Saluja, and Kozo Kinoshita, "On Low-Capture-Power Test Generation for Scan Testing," IEEE, 2005.
- [10] K.Miyase, K.Noda, H.Ito, K.Hatayama, T.Aikyo, Y.Yamato, H.Furukawa, X.Wen, and S.Kajihara, "Effective IR-Drop Reduction in At-Speed Scan Testing Using Distribution-Controlling X-Identification," IEEE/ACM International Conference on Computer-Aided Design, 2008.
- [11] K.Miyase, and S.Kajihara, "XID: Don't Care Identification of Test Patterns for Combinational Circuits," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol.23, No.2, 2004.
- [12] 奥那原 稜,細川 利典,"遷移故障テスト集合の活性化ファンナウトフリ 一領域数と消費電力解析に関する研究",日本大学生産工学部,卒業論文, pp32-36,2016