○池田 晃大

山田 康治

アンチペロブスカイト型 Li⁺固体電解質の作製及び物性評価

日大生産工 山根庸平 中釜 達朗

日大生産工(院) 日大生産工(非常勤)

1 まえがき

近年、電子機器の利用増加に伴いリチウムイ オン二次電池(LIB)の需要が増加している。今 後は電気自動車等に向け、より高性能なLIBが 必要とされている。しかし、現在使用されてい るLIBは、電解質にリチウム塩を溶解した有機 溶媒を使用しているため発火の危険性がある。 その問題を解決するために、現在無機固体を使 用した電解質の研究が活発におこなわれてい る。

無機固体電解質の候補の一つとして、アンチ ペロブスカイト構造のLi₃OX (X = Cl, Br)がある。 この物質は欠陥導入等の操作により有機電解 質に匹敵するLi⁺導電率を示すことが報告され ている¹⁾。しかし、この物質は純度の高い試料 の合成が困難である。そこで、同型のLi₂OHX (X = Cl, Br)が注目されている。中でも、Li₂OHCl は305K付近で高いLi⁺導電率の立方晶系に転移 する材料である²⁾。この材料では、構成イオン の置換により高いLi⁺導電率の立方晶を室温以 下でも維持する取り組みが行われてきた³⁾。そ こで本研究ではハロゲン化物イオンや水酸化 物イオンを他のイオンで置換し、より高いLi⁺ 導電率をもつ材料を探索し評価した。

2 実験方法および測定方法

Li₂OHX及び原料のLiOHとLiX(*X* = F, Cl, Br) は吸湿性の強い物質であるため、試料の合成は 全て乾燥した窒素雰囲気のグローブボックス 内で行った。

まず、LiOHとLiFは減圧下にて300℃で2時間 加熱し乾燥した。LiClとLiBrは溶融し水分を除 去した。次に、乾燥したLiOHとLiXをTable 1 の 化学量論比で混合し、黒鉛るつぼに詰めた後、 窒素雰囲気下にて350℃で1時間加熱した。

加熱後、取り出した試料を粉末X線回折 (XRD)測定で同定し、複素インピーダンス測定、 示差熱分析(DTA)及び、固体広幅⁷Li NMRでそれらの物性を評価した。

Table 1 各試料の原料比

	LiOH	LiF	LiCl	LiBr
Li ₂ OHCl	1	-	1	-
Li ₂ OHCl _{0.5} Br _{0.5}	1	-	0.5	0.5
Li ₂ OHBr	1	-	-	1
Li ₂ (OH) _{0.9} F _{0.1} Cl	0.9	0.1	1	-

実験結果及び考察
各合成試料のXRDパターンをFig.1 に示す。

室温においてLi₂OHClのみが斜方晶系で、そ の他の試料は立方晶系のパターンを示した。ま た、Clがイオン半径の大きいBr⁻に置換される につれピークが低角度側にシフトしており、ベ ガード則に則って格子が増大していることが 確認できた。

次に、Li₂OHClのDTAの結果をFig.2 に示す。

Synthesis and characterization of anti-perovskite Li⁺ solid electrolytes

Akihiro IKEDA, Yohei YAMANE, Tatsuro NAKAGAMA and Koji YAMADA

Fig.2 より、Li₂OHClは305Kにて相転移をす ることが分かった。

そこで、Li₂OHClの相転移前後でのXRD測定 を行い、それぞれの結晶構造を調査した(Fig. 3)。

Li₂OHCIは相転移前では斜方晶系であるが相 転移後は立方晶系になることが確認できた。

Fig. 4 に各試料の複素インピーダンス測定 から求めたLi⁺導電率の温度変化を示す。

Li₂OHClのみ室温付近にて急激にLi⁺導電率 が低くなっているが、その他の試料は室温まで 高いLi⁺導電率を維持している。

Li₂OHClのOHをFに一部置換することで本 来では斜方晶系となる温度でも立方晶系を維 持していることが分かる。同時に、CIの一部 をBrに置換した物質も、OHの一部をF置換し た物質と同様に、室温まで高いLi⁺導電率を維 持するということが分かった。

これらの試料の固体広幅⁷Li NMR測定から 得られた半値幅の温度変化をFig.5に示す。

Li₂OHBr及びLi₂OHCl_{0.5}Br_{0.5}は比較的滑らか に半値幅が減少しているが、相転移のある Li₂OHClやLi₂(OH)₀₉F₀₁Clは相転移に伴い、急激 に減少していた。以上の結果より、相転移する 系は相転移温度でLi⁺の拡散速度が急激に上昇 していることが分かった。

4 まとめ

 Li_2OHX はX = Clだと室温にて斜方晶系の結 晶だが、305K以上で高いLi⁺導電率をもつ立方 晶系の結晶に相転移することをDTAやXRD測 定で確認した。高いLi⁺導電率を持つ立方晶を 室温でも維持するため、OHやCIをそれぞれF やBrに置換することでアンチペロブスカイト 構造の歪みを減らし、立方晶系を維持すること ができた。

また、各物質のLi⁺導電率の温度変化より、 ハロゲンの置換は以前報告されたOHのF置換 と同様に室温付近まで高いLi⁺導電率を維持す ることに効果的であることが分かった。

「参考文献」

1) Y. Zhao et al., J. Am. Chem. Soc., 134, 2012, 15042-15047.

2) G. Schwering et al., ChemPhysChem, 4, 2003, 343-348.

3) Y. Li et al., Angew. Chem. Int. Ed., 55, 2016, 9965-9968.