マグネシウム合金圧延材の疲労試験による AE 特性

日大生産工(院) 〇河添 博六 日大生産工 小幡 義彦

1. まえがき

稼働中の機械の安全性を評価する検査法の一つ としてアコースティック・エミッション(AE)が期待され ている。機械が故障する原因の多くは疲労破壊であ る。疲労き裂進展に伴い観察されるAE信号は、純チ タンでは多く発生するのに対し鋼材ではその発生数 は少ないなど材料依存性が大きいなど、疲労き裂に おけるAE発生機構は十分な解明がなされていない。

本研究は、双晶変形が支配的で圧延による強度 板面異方性が大きいAZ31マグネシウム合金圧延材 を供試材として疲労き裂進展に伴うAE特性につい て検討した。疲労き裂進展に伴うAEは破壊による新 生面生成が主な要因と考えられているが、著者らの 実験から塑性変形の要因も無視できない結果が得 られている。双晶変形による活発なAE発生が期待さ れる本供試材の疲労試験結果から、き裂進展に伴う AEの塑性変形による影響について検討した。

2. 実験方法

供試材はAZ31マグネシウム合金で、き裂進展方 向が圧延方向に平行なL 材およびそれと垂直な下 T 材の2種類の試験片に加工した。また、それぞれ 523Kで3時間焼きなましを施した試験片も用意し、 計4種類に対し疲労試験を行った。Fig.1に疲労試 験で使用した試験体の形状ならびに小型 AE セン サ(PIKO)の取り付け位置を示す。疲労試験は油圧 サーボ型疲労試験機、島津製作所製 EHF-FB5を 使用し、一定荷重振幅、応力比 R=0.1、繰り返し速

度1Hz の条件で行 った。き裂進展長さ は光学式測微鏡に より、試験片の両側 面から計測した。 AE 計測しきい値は 40dB に設定した。 また、AE 発生荷重 位相をサイクルカウ ンターのアナログ出 力から計測した。

Fig.1 Specimen and set position of AE sensors

3. 実験結果および考察

3.1 非熱処理材のAE特性

Fig. 2 は、最大荷重1.2kNの条件で試験した非 熱処理材のAE到達時間差(Δt)分布である。切り出 し方向に依らず計測されたAEはΔt=0を中心に分布 し、機械摩擦雑音などが少ない結果となっている。

Fig.3は、非熱処理材の発生荷重位相分布図で ある。荷重位相が0~4Vの範囲で計測されたAEを Opening AE、4~6VのAEをPeak Load AE、6~ 10VのAEをClosure AEとする。両試験片ともAEが Peak Load AEが支配的であり、機械摩擦による信 号は非常に少ない結果となった。また、Peak Load

Fig.3 AE load phase distribution of non-heat treatment specimens

Acoustic Emission Characteristics from Magnesium Alloy Rolled Material during Fatigue Crack Propagation

Hiromu KAWAZOE and Yoshihiko OBATA

-401-

AEは、疲労の進行に伴い増加する傾向が明確で、 き裂進展をAEが確実に検出していると考えられる。

Fig.4は、非熱処理材のAE累積事象数とき裂進展 長さを繰り返し数に対してプロットしたものである。疲 労破断直前にAEが飛躍的に発生する領域以外は、 き裂進展量とAE累積数は比例する結果となった。ま た、L方向試験片が多く発生していることも確認でき る。

3.2 熱処理材のAE特性

Fig.5は、焼きなましを施したL方向試験片のAE発 生荷重位相分布である。非熱処理材に比べ多くの AEが計測された。特に破断直前の領域では、AE 計測装置の記録速度を超える多くのAE信号が発生 したと考えられる。この結果は、焼きなましにより延性 が増加し塑性変形しやすくなったと考えられる。

Fig.5 $\,$ AE load phase distribution of annealed specimens

propagation curve of annealed specimens

Fig.6は、焼き鈍し材のAE累積事象数とき裂進展長 さを繰り返し数に対してプロットしたものである。非熱 処理材に比べ、非常に多くのAEが計測されている。 一般的に、高強度材料ほどき裂が進展しやすいとい われている。しかし、今回の結果は熱処理を施した 低強度材料の方が多くのAEが計測されている。し たがって、AZ31マグネシウム合金では、疲労き裂進 展に伴い発生するAEはき裂進展による要因よりは 塑性変形(双晶変形)に起因する信号が支配的であったと考えられる。また、T方向試験片よりL方向試験片が多く発生し、非熱処理材の結果と同様であった。これは焼き焼き鈍しによりT方向の強度が低下し、顕著に延性が増加したためだと考えられる。

3.3 引張試験におけるAE特性

Fig.7に引張試験によるAEの発生特性を示す。 AEは塑性変形が発生した時、最も活発になり、降 伏域でAEピークが発生した。その後、加工硬化とと もに減少していき破断の瞬間にまた増加する形とな った。本材料の塑性変形に伴うAE活動度は非常に 活発であり、疲労試験で計測されたAEの多くは、き 裂先端部の局所的領域での塑性変形がその発生 原因であることが示唆される。

Fig.7 Stress and AE RMS value of tensile test

4. まとめ

- AE到着時間差、荷重位相分布図によりき裂進 展に伴うAE信号を多く計測できた。
- 2) 疲労き裂進展に伴うAE信号は、T方向よりL方 向試験片が多く発生する結果となった。
- 3) 焼き鈍し材は、非熱処理材より多くのAEが発 生する結果が得られた。
- 引張試験においてAEを計測した結果、非常に 活発であることが確認された。
- 5) 以上の結果より、AZ31マグネシウム合金板の 疲労き裂進展に伴い計測されるAEは、き裂先 端部の局所的な領域での塑性変形が主原因 であることが考えられる。

「参考文献」

- 仲佐 博祐:アコースティック・エミッションの 理論と実際、地人書館(1994)
- 2) 社団法人 日本非破壊検査協会、「アコース ティック・エミッション」、社団法人 日本非破 壊検査協会、(1990)、pp. 32-33
- 湯続躍、三浦博己、酒井拓、高温加エマグネ シウム合金AZ31の等時間焼きなまし特性、 日本金属学会誌、第68巻、第11号(2004) pp.946-951

-402 -