[CpFe(P-P)L]PF₆の配位子交換反応 ーキレート効果-

日大生産工(院) 〇北村 光 日大生産工 津野 孝 レーゲンスブルグ大 ヘンリ・ブルナー

1. 緒言

三ッ脚ハーフサンドイッチ型金属錯体 [$(\eta^{n}$ -Arene)ML₁L₂L₃]錯体は,極性溶媒中で単 座配位子の何れかが解離し,16電子不飽和中 間体を与える。この中間体は様々な触媒的不 斉合成へ利用されており,単座配位子が解離 した中間体の立体構造ならびに安定性はそれ ら錯体の触媒能に大きく影響する¹⁾。従って, これら金属錯体を用いた触媒反応機構におい て錯体の中間体の立体化学を明確にすること は,不斉触媒の観点から極めて重要となる。

Brunner \succeq Tsuno \circlearrowright ^{2,3)}lt, [CpRu(P-P')Hal] (P-P' = dppm-Me, Prophos, Chairphos) $\mathcal{O} \neq \mathcal{V}$ -ト環サイズに対する動力学的検討を行い、ジ アステレオマー間の反転エネルギー障壁がキ レート環サイズの減少に伴い増加していくこ とを明らかにした。また, Ru と同族で上位周 期にある Fe(II)を中心金属とした[CpFe-(Prophos)L]PF₆ [L = PPh(OR)₂, PPh₂(OR)]にお いて、 単座配位子 L の Cone angle が大きくな るにつれて、Fe-L間の結合長が長くなり、特 定の温度範囲で解離することを見出した⁴⁾。 しかしながら, 単座配位子の立体効果につい ては、5員環キレート錯体のみである。Ru 錯 体のようにキレート環サイズを考慮した Fe 錯体の立体障害による単座配位子の解離過程 を解明することは興味深い。今回, $[CpFe(P-P)L]PF_6$ $[P-P = Ph_2P(CH_2)_nPPh_2,$ $PPh_2Me \ x \ 2, \ L = NCMe, \ PPh_2(OMe), \ PPh_2(OR)]$ を合成し、これら錯体の単座配位子交換反応 の熱力学的パラメータを決定し、キレート環 サイズに基づく[CpFe(P-P)]⁺中間体の安定性 について検討した。

2. 実験

[CpFe(P-P)NCMe]PF₆ [P-P = Ph₂P(CH₂)_nPPh₂ (n = 1: dppm, 2: dppe, 3: dppp, 4: dppb), PPh₂Me x 2]の合成: アセトニトリル中, [CpFe(CO)₂I], Ph₂P(CH₂)_nPPh₂ (1.2 eq.)または PPh₂Me (2.2 eq.), NH₄PF₆ (10 eq.)を加え, 100-W 高圧水銀灯を用いて 8 時間照射した。 反応溶液の濃縮残分をクロロホルムでセライ トろ過した。続いて, 塩化メチレン/THF (100: 1) で シ リ カ ゲ ル カ ラ ム に 通 し [CpFe(P-P)NCMe]PF₆を得た(44-78%)。

[CpFe(P-P)L]PF₆ [P-P = Ph₂P(CH₂)_nPPh₂ (n = 2: dppe, 3: dppp), L = PPh(OMe)₂, PPh₂(OR) (R = Me, Et, *i*Pr)]の合成: THF 中, [CpFe-(P-P)NCMe]PF₆に PPh(OMe)₂ または PPh₂(OR) (10 eq.)を加え, 一昼夜還流した。反応溶液の 濃縮残分を塩化メチレンでシリカゲルカラム に通し[CpFe(P-P)L]PF₆ (33-63%)を得た。

[CpFe(P-P)L]PF₆の L/P(OMe)3 配位子交換:

[CpFe(P-P)L]PF₆ (*ca*. 10 mg)/CDCl₃ (0.40 mL) 溶液に P(OMe)₃ (10 eq.)を加え, Bruker 社製 温度可変装置付 Avance-400NMR を用いて³¹P 核を測定した。交換反応速度定数 k を決定し, 活性化パラメータ $\Delta H^{\ddagger}, \Delta S^{\ddagger}, \Delta G^{\ddagger}$ を求めた。

3. 結果・考察

[CpFe(P-P)NCMe]PF₆ [P-P = Ph₂P(CH₂)_nPPh₂ (n = 2, 3), PPh₂Me x 2]は再結晶によって X 線 構造解析可能な単結晶が得られ, X 線構造解 析によってその立体化学を明らかにした。 [CpFe(PPh₂Me)₂NCMe]PF₆ の ORTEP 図 を Figure 1 に示す。Table 1 に合成した[CpFe-(P-P)L]PF₆ の主な結合長ならびに結合角をま とめた。[CpFe(Ph₂P(CH₂)_nPPh₂)NCMe]PF₆ はキ レート環サイズの増加に伴って Fe-NCMe 結 合長が増大した。また, 非キレート錯体[CpFe-

Ligand Exchange Reaction of [CpFe(P-P)L]PF₆ - Chelate Ring Size Effects-

Hikaru KITAMURA, Takashi TSUNO and Henri BRUNNER

(PPh₂Me)₂NCMe]PF₆のP-Fe-P間のBond angle ならびに Fe-NCMe 結合長は[CpFe(dppp)-NCMe]PF₆と[CpFe(dppb)NCMe]PF₆の間の値 をとる。[CpFe(P-P)PPh(OMe)₂]PF₆ならびに [CpFe(P-P)PPh₂(OR)]PF₆は単座配位子の Cone angleの増加に伴い Fe-L 結合長が増大した。

Figure 1. ORTEP drawing of [CpFe(PPh₂Me)₂NCMe]PF₆. Hydrogen atoms and a hexafluorophosphate ion are omitted for clarity.

Table 1. Selected bond angles and lengths in $[CpFe(P-P)L]PF_6$ [P-P = Ph₂P(CH₂)_nPPh₂ (n = 1-4), PPh₂Me x 2, L = NCMe, PPh(OMe)₂, PPh₂(OR)].

n	P-P ligand	L	Fe-PPh ₂ Bond [Å]	P-Fe-P Bond angle [°]	Fe-L Bond [Å]
1	dppm ⁵⁾	MeCN	2.207, 2.196	74.67	1.892
2	dppe	MeCN	2.207, 2.211	86.18	1.896
3	dppp	MeCN	2.208, 2.211	95.09	1.903
4	dppb ⁶⁾	MeCN	2.228, 2.235	98.10	1.917
-	PPh ₂ Me x 2	MeCN	2.225, 2.227	96.12	1.910
2	dppe	PPh(OMe) ₂	2.201, 2.217	85.11	2.162
2	dppe	PPh2(OMe)	2.202, 2.261	84.48	2.199
2	dppe	PPh2(OEt)	2.216, 2.271	84.09	2.210
2	dppe	PPh2(Oi Pr)	2.206, 2.232	84.12	2.224
3	dppp	PPh(OMe) ₂	2.218, 2.238	93.89	2.186
3	dppp	PPh2(OMe)	2.224, 2.276	92.28	2.218

Table 2に NCMe/P(OMe)₃配位子交換の結果 を示す。293 K における[CpFe(Ph₂P(CH)_nPPh₂)-NCMe]PF₆ (n = 2-4)ならびに[CpFe(Ph₂Me)₂-NCMe]PF₆の NCMe/P(OMe)₃配位子交換の速 度は, P-P = PPh₂Me x 2 > dppp > dppb > dppe の順となった。293 K における ΔS^{\ddagger} が P-P = dppe, PPh₂Me x 2 は正値であるのに対して, P-P = dppp, dppb は負値として求められた。ま た, [CpFe(dppm)NCMe]PF₆の NCMe/P(OMe)₃ 配位子交換は二座配位子 dppm の解離が認め られ,反応速度を決定できなかった。

Table 3に PPh₂(OR)/P(OMe)₃配位子交換の結 果を示す。PPh₂(OR)/P(OMe)₃配位子交換の速 度は単座配位子の立体障害の増大に伴って増 加し、323 K における ΔS^{\ddagger} は何れも正値であっ た。また、[CpFe(dppp)PPh₂(OR)]PF₆の PPh₂(OR)/P(OMe)₃配位子交換の速度は [CpFe(dppe)PPh₂(OR)]PF₆よりも速い。これは X 線構造解析による Fe-L 結合長の延伸に基 づく結合エネルギーと対応する。 $\label{eq:constraint} \begin{array}{l} \mbox{Table 2. Kinetics of the NCMe/P(OMe)_3 ligand exchange reaction in [CpFe(P-P)NCMe]PF_6 [P-P = dppe, dppp, dppb, PPh_2Me x 2] in CDCl_3. \end{array}$

[CpFe(P-P)NCMe]PF ₆		[CpFe(P-P)P(OMe) ₃]PF ₆	
P-P ligand	Temp	k	$\tau_{1/2}$
Activation parameters for 293 K	[K]	[min ⁻¹]	[min]
P-P = dppe	293	$1.3 \text{ x } 10^{-3} \pm 1.2 \text{ x } 10^{-4}$	549
ΔH^{+} (293 K) = 118 kJ mol ⁻¹	300	$4.3 \ge 10^{-3} \pm 2.4 \ge 10^{-4}$	163
ΔS^{*} (293 K) = 70 J mol ⁻¹ K ⁻¹	307	$1.3 \ge 10^{-3} \pm 7.5 \ge 10^{-4}$	53
$\Delta G^{+}(293 \text{ K}) = 98 \text{ kJ mol}^{-1}$	313	$3.0 \ge 10^{-2} \pm 2.7 \ge 10^{-3}$	23
P-P = dppp	293	$3.1 \text{ x } 10^{-2} \pm 1.4 \text{ x } 10^{-3}$	22
ΔH^{+} (293 K) = 84 kJ mol ⁻¹	296	$4.3 \text{ x } 10^{-2} \pm 4.6 \text{ x } 10^{-3}$	16
ΔS^{*} (293 K) = -21 J mol ⁻¹ K ⁻¹	300	$6.8 \ge 10^{-2} \pm 2.1 \ge 10^{-3}$	10
$\Delta G^{+}(293 \text{ K}) = 90 \text{ kJ mol}^{-1}$	303	$1.0 \ge 10^{-1} \pm 9.6 \ge 10^{-3}$	7
P-P = dppb	293	$2.2 \text{ x } 10^{-2} \pm 1.1 \text{ x } 10^{-3}$	32
ΔH^{+} (293 K) = 83 kJ mol ⁻¹	296	$3.2 \text{ x } 10^{-2} \pm 2.5 \text{ x } 10^{-3}$	22
ΔS^{*} (293 K) = -10 J mol ⁻¹ K ⁻¹	300	$5.3 \text{ x } 10^{-2} \pm 4.8 \text{ x } 10^{-3}$	13
$\Delta G^{+}(293 \text{ K}) = 91 \text{ kJ mol}^{-1}$	303	$7.3 \times 10^{-2} \pm 1.6 \times 10^{-3}$	10
PPh ₂ Me x 2	278	$9.4 \ge 10^{-3} \pm 6.8 \ge 10^{-4}$	74
ΔH^{+} (293 K) = 91 kJ mol ⁻¹	283	$1.7 \text{ x } 10^{-2} \pm 1.0 \text{ x } 10^{-3}$	40
ΔS^{*} (293 K) = 10 J mol ⁻¹ K ⁻¹	288	$3.6 \text{ x } 10^{-2} \pm 3.1 \text{ x } 10^{-3}$	19
ΔG^{*} (293 K) = 88 kJ mol ⁻¹	293	$7.3 \text{ x } 10^{-2} \pm 7.2 \text{ x } 10^{-3}$	10

Table	3.	Kinetics	of	the	PPh2(OR)/P(OMe)3	ligand	exchange	reaction	in
$[CpFe(P-P)NCMe]PF_6$ (P-P = dppe, dppp, R = Me, Et, <i>i</i> Pr) in CDCl ₃ .									

$\begin{bmatrix} Ph_2 Pe_1 \\ Ph_2 Pe_2 \\ (CH_2)_n \\ PPh_2 \end{bmatrix} PF_6 = P(C)$	DMe) ₃ (10 eq.) CDCl ₃	→ Ph ₂ P (CH ₂) _n →PPh ₂	PF ₆
[CpFe(P-P)PPh ₂ (OR)]PF ₆		[CpFe(P-P)P(OMe) ₃]PF	6
P-P ligand, R	Temp	k	$\tau_{1/2}$
Activation parameters for 323 K	[K]	[min ⁻¹]	[h]
P-P = dppe, R = Me	323	$5.5 \ge 10^{-6} \pm 4.7 \ge 10^{-7}$	2083
ΔH^* (323 K) = 136 kJ mol ⁻¹	328	$1.1 \ge 10^{-5} \pm 2.2 \ge 10^{-6}$	1035
$\Delta S^{+}(323 \text{ K}) = 39 \text{ J mol}^{-1} \text{ K}^{-1}$	333	$2.7 \text{ x } 10^{-5} \pm 2.7 \text{ x } 10^{-7}$	422
ΔG^* (323 K) = 122 kJ mol ⁻¹	338	$5.2 \text{ x } 10^{-5} \pm 9.1 \text{ x } 10^{-8}$	222
P-P = dppe, R = Et	323	$6.8 \ge 10^{-6} \pm 2.8 \ge 10^{-6}$	1698
ΔH^* (323 K) = 160 kJ mol ⁻¹	328	$2.2 \text{ x } 10^{-5} \pm 2.5 \text{ x } 10^{-6}$	519
ΔS^{*} (323 K) = 118 J mol ⁻¹ K ⁻¹	333	$6.8 \ x \ 10^{\text{-5}} \pm 2.2 \ x \ 10^{\text{-6}}$	251
ΔG^* (323 K) = 121 kJ mol ⁻¹	338	$1.1 \ge 10^{-4} \pm 1.0 \ge 10^{-7}$	109
P-P = dppe, R = i Pr	323	$5.7 \ge 10^{-5} \pm 1.9 \ge 10^{-6}$	204
ΔH^* (323 K) = 164 kJ mol ⁻¹	328	$1.1 \ x \ 10^{\text{-4}} \pm 1.5 \ x \ 10^{\text{-6}}$	102
ΔS^{*} (323 K) = 147 J mol ⁻¹ K ⁻¹	333	$3.7 \ge 10^{-4} \pm 3.0 \ge 10^{-5}$	31
ΔG^{*} (323 K) = 115 kJ mol ⁻¹	338	$8.2 \ge 10^{-4} \pm 5.2 \ge 10^{-5}$	14
P-P = dppp, R = Me	313	$4.0 \ge 10^{-4} \pm 2.1 \ge 10^{-4}$	29
ΔH^* (323 K) = 133 kJ mol ⁻¹	318	$7.6 \ x \ 10^{\text{-4}} \pm 1.5 \ x \ 10^{\text{-5}}$	15
ΔS^{*} (323 K) = 79 J mol ⁻¹ K ⁻¹	323	$2.4 \text{ x } 10^{-3} \pm 2.2 \text{ x } 10^{-5}$	5
ΔG^* (323 K) = 107 kJ mol ⁻¹	328	$3.9 \ge 10^{-3} \pm 3.9 \ge 10^{-5}$	3
P-P = dppp, R = Et	313	$7.5 \ge 10^{-4} \pm 4.3 \ge 10^{-5}$	16
ΔH^* (323 K) = 142 kJ mol ⁻¹	318	$1.9 \ge 10^{-3} \pm 3.5 \ge 10^{-5}$	6
ΔS^{*} (323 K) = 115 J mol ⁻¹ K ⁻¹	323	$4.3 \ x \ 10^{\text{-3}} \pm 1.6 \ x \ 10^{\text{-4}}$	3
ΔG^* (323 K) = 105 kJ mol ⁻¹	328	$9.4 \ge 10^{-3} \pm 4.5 \ge 10^{-4}$	1

4. 参考文献

1) Brunner, H.; Tsuno, T. Acc. Chem. Res. 2009, 24, 1501-1510. 2) Brunner, H.; Muschiol, M.; Tsuno, Takahashi, T.; Zabel, M. T.; Organometallics 2008, 27, 3514-3525. 3) Brunner, H.; Muschiol, M.; Tsuno, T.; Takahashi, T.; Zabel, M. Organometallics 2010, 29, 428-435. 4) Brunner, H.; Kurosawa, T.; Muschiol, M.; Tsuno, T.; Balazs, G.; Bodensteiner, M. Organometallics 2013, 32, 4904-4911. 5) Ruiz, J.; Garland, M-T.; Roman, E.; Astruc, D. J. Organomet. Chem. 1989, 311, 309-326. 6) Pagnoux-Ozherelyeva, A.; Bolienb, D.; Gaillard, S.; Peudrua, F.; Lohiera, J.-F.; Whitbyb, R. J.; Renaud, J.-L. J. Organomet. Chem. 2014, 774, 35-42.