狭い液滴間隔における燃料液滴列を燃え広がる火炎の先端挙動

日大生産工	○菅沼 祐介	日大生産工(院)	橘田	聖
日大生産工	野村 浩司	日大生産工	氏家	康成

1 緒言

噴霧燃焼はガスタービンやディーゼルエン ジンなどの幅広い内燃機関の燃焼器に用いら れている液体燃料の燃焼方式である.燃料液滴 を直線状に配置した液滴列の火炎燃え広がり に関する研究は,噴霧燃焼に特徴的な郡燃焼の 発生機構を解明するための重要なアプローチ であり,実験および数値解析が多くの研究者に よって行われている[1]. 過去に行われた実験 では、燃料液滴の初期直径は0.8~1.0 mm程度 を用いており、燃焼現象の時間的・空間的分解 能を高くすることで計測を容易にしている. 初 期液滴直径が異なる条件の実験であっても,液 滴間隔と燃え広がり速度を初期液滴直径で正 規化することで、結果の比較を可能にしてきた [2]. 実際の噴霧を構成する数µmから数十µm の燃料液滴が燃焼する場合,実験で用いる大き な燃料液滴が燃焼する場合と比べると,液滴が 小さい場合の方が現象は高速となる. 高速な現 象においては、燃え広がりに要する時間に占め る化学反応時間の割合は大きくなる. そこで, 過去に行われてきた液滴燃焼の知見を,実際の 噴霧の燃焼現象に結びつけるためには,燃え広 がりに要する時間の中で化学反応時間が支配 的になる液滴間隔や初期液滴直径などの条件 を明らかにし,理論モデルを再構築する必要が あると考える. 先行研究において初期液滴直径 と液滴間隔をパラメータとした液滴列火炎燃 え広がり実験を微小重力環境にて行った結果, 火炎燃え広がり誘導時間が短い条件では,火炎 燃え広がり速度において液滴直径に対する相 似則が成立しないことが示された[3]. 比較的 液滴間隔が広い条件では,熱伝導や液滴の初期 加熱など液滴直径による相似則が成立する時 間が燃え広がりに要する時間に対して支配的 であると考えられる.本報では,相似則が成立 しない無次元液滴間隔が狭い条件において火 炎挙動を詳細に観察し,初期液滴直径と火炎燃 え広がりに与える影響について調べ,燃え広が りの支配要因を考察した結果を報告する.

2 実験方法および測定方法

図1に実験装置の概略を示す.実験装置は液 滴列支持装置,燃料供給ポンプ,液滴列生成装 置,液滴列移動装置,点火装置,光学観察装置, および制御装置から構成される.液滴列支持部 には,液滴数と同数の懸垂線を等間隔に,液滴 列と垂直方向に張った.懸垂線には直径14 µm のSiCファイバ(日本カーボン,ハイニカロン) を使用した.各ファイバの中点に微小のガラス ビーズを設置することで液滴を懸垂させた.液

Fig.1 Experimental apparatus.

Leading Edge Behavior of Flame spreading along a Fuel Droplet Array in Narrow Droplet Spacing

Yusuke SUGANUMA, Satoshi KITTA, Hiroshi HOMURA and Yasushige UJIIE

3-12

滴間隔Sはファイバを張る間隔で変化させた. 燃料供給ポンプはピエゾ素子によって駆動さ れ,パルス制御により高精度に燃料の送り出し 量を制御することが可能である. 液滴列生成装 置により,装置可動部に取り付けられた燃料吐 出用極細ガラス管(先端外径 約40 µm)の先 端を,液滴支持部のガラスビーズに移動させる. 液滴を生成・懸垂した後,ガラス管を後退させ, 液滴列移動装置により液滴列支持部を液滴間 隔だけ移動させる.この動作を液滴個数回繰り 返し,液滴列を生成する.液滴列支持部を液滴 列移動装置により実験位置まで移動させる. 点 火装置には,熱線点火方式を採用した.直径 0.29 mmの鉄クロム線に通電することで、第1 液滴への点火を行った.現象の観察には高速度 ビデオカメラ (ナック,Q1v,撮影速度:4000 fps, 露光時間: オープン, 画像サイズ: 640× 480 pix, 解像度:最大60 pixel/mm)を用いた. 液滴直径の確認は実験開始直前にCCDカメラ (センテック, STC-SBE132POE, 画像サイ ズ: 1280×1024 pix, 解像度:最大130 pixel/mm) によって実施した. これらの装置の

液滴の個数はすべての液滴間隔において10 個とした. 液滴列の初期液滴直径doは0.3, 0.6, および1.0 mmの3条件で実施した. 第3から第 9液滴の初期液滴直径の精度は±5%である.液 滴間隔Sは0.6, 1.2および2.0 mmの3条件で実 施した.液滴間隔の精度は第3から第9液滴の 範囲において、S<1 mmの条件では±10%以 内であり、それ以外の条件については±5%で ある. 第1, 第2, および第10液滴については実 験条件とした初期液滴直径に近い値となるよ うに調整した.燃料には正デカンを用いた.雰 囲気は大気圧, 室温 (25±5℃) である. 全て の実験は通常重力環境で実施した.通常重力実 験では自然対流の影響が懸念される.しかしな がら、本報が対象とした燃え広がり初期に生じ る予混合火炎伝播については,形成された火炎 形状から自然対流の影響は小さいと判断した. 予混合火炎伝播速度は高速度カメラ画像より

制御はシーケンサによって行った.

Fig.2 Time variation of flame front position.

Fig.3 Initial stand-off ratio of flame as a function of initial droplet diameter. [3]

火炎先端位置の履歴を取得し, 予混合火炎が進行する経路に沿って算出した. 各条件における 予混合火炎伝播速度は, 3回の実験の平均値と した.

3 実験結果および検討

図2に燃え広がる火炎の先端位置の時間履歴 を示す. 初期液滴直径が異なる3つの結果を示 した. 初期液滴直径が1.0 mmの場合,火炎先 端位置がステップ状に進行する現象が顕著に 観察された.3つの実験条件はいずれも液滴間 隔を初期液滴直径で除した無次元液滴間隔 Sldbが2.0の条件である. この条件における火 炎燃え広がり挙動は,拡大する群燃焼火炎が未 燃次液滴に近接し,未燃次液滴の蒸発が活発と なり可燃性混合気が形成し火炎が燃え広がる. ステップ状の火炎先端の進行は群火炎により 未燃次液滴が加熱され,可燃性混合気を供給す るまで時間を要したことで火炎が停滞したた めであると考えられる. 初期液滴直径が小さい 場合は、この時間が非常に短くなるため、本実 験の観察系が有する時間的,空間的分解能では 観察できなかったと考えられる.現象を単純に して考えた場合可燃性混合気を供給するまで の要した時間 なは, 室温の液滴を瞬間的に高温 雰囲気中に晒し,可燃性混合気を供給可能な温 度まで昇温するまでの時間と考えることがで きる.

ここで、 ρ_f は燃料密度、 C_{pf} は燃料の定圧比熱、 $T_{\phi=1.0}$ は燃料であるデカンが当量比1.0の蒸気 を供給する温度(330.6 K)、 T_0 は液滴の初期 温度(室温=300 K)、 T_a は雰囲気温度(2000 K)、hは燃料達率である.また、熱伝達率は以 下で表すことができる.

$$h = \frac{Nu\lambda_g}{d_0} \tag{2}$$

ここでNuはヌッセルト数, λ_g は雰囲気の熱 伝導率である.自然対流および強制対流が無い 条件とすればNu=2とおける.よって(1)およ び(2)式より加熱時間thは以下で示される.

$$t_{\rm h} = \frac{\rho_f C_{pf} (T_{\phi=1.0} - T_0)}{6\lambda_g (2T_a - T_{\phi=1.0} + T_0)}$$
(3)

(3)式より静止雰囲気であれば加熱に必要な 熱量と単位時間に入る熱量から加熱時間は液 滴直径の2乗に比例する. 初期液滴直径が1.0 mmの場合,室温(300K)の液滴を2000Kの 雰囲気中(空気)に晒し、当量比1.0を供給可能 な温度(330.6 K)まで上昇させるのに要する 時間は、(3)式に適切な物性値を入れて計算す ると21.2 msであった. 図2(c)の条件で火炎先 端位置が停滞している時間は最大で7 ms程度 であり,単純な熱の授受の計算とは大きく異な る.これは、計算では液滴回りの流れを考慮し ていないことも挙げられるが, 群火炎が未燃次 液滴だけでなく, さらに次の未燃液滴まで予熱 していることも要因の一つであると考えられ る[4]. 火炎燃え広がり速度はプロットの傾き より算出した. 初期液滴直径が増大するに従い 火炎燃え広がり速度と初期液滴直径の積であ る正規化火炎燃え広がり速度 Vidoは増大した. これは微小重力環境における実験と定量的に もほぼ一致した[3]. この条件は初期液滴直径 による正規化が成立しない条件といえる.図3 に初期液滴直径と初期火炎直径比 d/dbの関係 を示す.これは、本報の実験装置とほぼ同一の 装置を用いて得た微小重力環境における実験 結果である[3]. 火炎直径は懸垂線に用いたSiC ファイバが火炎により加熱され発光する様子 をカメラで撮影して,発光強度分布の中心を火 炎位置とすることで求めた. 初期液滴直径の増 大に伴って初期火炎直径比は減少した. 初期火 炎が形成される距離が液滴中心から増大する ことは、液滴の周囲に形成された可燃性混合気 が点火可能な温度域まで拡散するまでの時間 が増大するとことを意味する. 混合気の正規化 拡散特性時間なは以下で示される.

$$t_d = \frac{\left(\frac{d_f}{2d_0}\right)^2}{D} \tag{4}$$

ここでDは燃料蒸気の拡散係数である.実験 で得られた火炎直径を入れて計算すると, 拡散 係数は一定値と考えられるため, d/d の減少に 伴って正規化拡散特性時間は減少する.図3の 結果と合わせて考えると,これは初期液滴直径 の増大に伴って燃え広がりに要する時間(燃え 広がり誘導時間) に占める可燃性混合気の拡散 に要する時間が短くなっていると考えられる. 無次元液滴間隔が広い条件では,高温域の熱伝 導や液滴の初期加熱が燃え広がり誘導時間対 して支配的であるため, 火炎燃え広がりにおけ る初期液滴直径の相似則が成立するが、Sld= 2.0の条件では、燃え広がり誘導時間に占める 相似則が当てはまらない燃料蒸気の拡散時間 の割合が増えたことが、燃え広がりの相似則が 成立しない要因の一つであると考える.燃料蒸 気の拡散時間が相似則に則らないのは,初期火 炎が成立する位置が,化学反応速度に依存する ためだと考えられる.

4 結言

液滴間隔,および初期液滴直径をパラメータ として火炎燃え広がり実験を行った.燃料には 正デカンを用いた.雰囲気は大気圧,室温とし, 通常重力環境で実施した.狭い無次元液滴間隔 における火炎先端挙動を調べた結果,以下の知 見を得た.

1) 液滴直径が大きい条件で,火炎先端位置が 停滞しステップ状に進む挙動が観察された.

2) 初期液滴直径の増大に伴って正規化拡散特 性時間は増大する.

3) Sldo=2.0 の条件で火炎燃え広がり速度の初 期液滴直径による相似則が成立しないのは,燃 え広がり誘導時間に対し,相似則に則らない可 燃性混合気の拡散時間の割合が増えたことが 要因の一つと考えられる.

謝辞

本研究の一部は,生産工学部若手研究者支援 研究費の支援により行った.ここに付記し感謝 の意を表す.

「参考文献」

 Y. Nunome, S. Kato, K. Murata, H. Kobayashi, T. Niioka, "Flame Propagation of n-Decane Spray in Microgravity", Proc. Combust. Inst., 29 (2002) 2621-2626.

2) M. Mikami, H. Oyagi, N. Kojima, M. Kikuchi, Y. Wakashima, S. Yoda, "Microgravity experiments on flame spread along fuel-droplet arrays using a new droplet-generation technique", Combust. Flame, 141 (2005) 241-252.

3) Y. Suganuma, N. Ikeyama, H. Nomura, Y. Ujiie, "Droplet Array Combustion Experiments on Effect of Initial Droplet Diameter on Flame Spread Characteristic Time", 30th International Symposium on Space Technology and Science, 2015-h-18 (2015).

4) H. Nomura, H. Takahashi, Y. Suganuma, M. Kikuchi, "Droplet ignition behavior in the vicinity of the leading edge of a flame spreading along a fuel droplet array in fuel-vapor/air mixture", Proc. Combust. Inst., 34 (2013) 1593-1600.