組立補剛された山形鋼トラス部材の座屈耐力に関する研究

-細長比と補強効果-

日大生産工(院)	○佐藤	凱	アイ・ティ・シ・コンサルティング	石井	桂吾
日大生産工	小松	博	飯島建築事務所	八木	茂治

<u>1. はじめに</u>

山形鋼を用いた鉄骨トラス梁は 1950~1970 年頃 に工場建屋などで多く採用されたが、現耐震基準 を満たしていない既存不適格なものが散見され、 耐震補強の必要がある。このため、山形鋼組立材 による鉄骨トラス梁の耐震補強方法として,既往 研究¹⁾では平鋼を取付金物により山形鋼フィレッ ト部に圧着することで、部材に一切加工を行わな い簡便かつ施工性の高い補強方法を提案した。

本研究では、この手法を用い中心圧縮実験および 有限要素解析により、無補強試験体と補強試験体の 座屈耐力を求め、細長比の違いによる補強効果につ いて検証を行った。また、実験で行っていない取付 角度を変えた補強効果の有限要素法により確認を 行った。

2. 中心圧縮実験

2.1. 試験体

本実験で使用する試験体形状を図1・2に示す。試 験体はトラス部材の等辺山形鋼L-75×75×6を2丁 でT字型に組み合わせた試験体を使用する。補強方 法は図2に示すようにタイプAは山形鋼組み立て材 の各フィレット部分に平鋼FB-4.5×125を取付金物 により圧着する。タイプBはタイプAに加え山形鋼の 間のつづり材を平鋼FB-6.0×180に置き換え連続材 として取り付けたものである。山形鋼、平鋼の機械 的性質を表-1に,試験体一覧を表-2に示す。細長 比は λ =80, 100, 120, 140(一般化細長比 λ c=1.02, 1.27, 1.53, 1.78)の4種類で無補強材を各2体,補 強材を各3体としている。

 δ は支点間の材軸方向の縮み量で、 δ yは降伏ひず み ϵ y=1896×10⁻⁶に山形鋼寸法を掛けた降伏変位で ある。

一般化細長比λc
λc
σ_y:降伏応力度
β
β
β
σ_σ:座屈応力度=537kN

$$\lambda c = \lambda \times \sqrt{\frac{\sigma_y}{\pi^2 E}}$$

σ_y:降伏応力度 E:ヤング係数
σ_α:座屈応力度=537kN
2.2.実験方法

及島建築事務所 八木 茂治 実験装置を図3に示す。実験は1000kN および 2000kN 万能試験機を用いた中心圧縮実験である。 試験体の両端には厚さ25mmのエンドプレートを 溶接し,そのエンドプレートに高さ120mmのナイ フエッジをもったピン支持装置をボルト締めで固 定し,組立材の弱軸方向のみに回転が自由とした。 荷重は試験機より直接検出し,変位は試験体の材 軸方向および材端の回転角を測定している。

Study on Buckling Strength of Angle Steel Truss Member Reinforced with Built-Up Method — Slenderness ratio and the reinforcing effect —

Kai SATO, Keigo ISHI, Hiroshi KOMATSU and Shigeharu YAGI

図3 実験装置

表1 鋼材の機械的性質								
	降伏応力度	引張強さ	ヤング係数	伸び率				
	σ_{y}	σ_u	E	$\mathcal{E}b$				
	(N/mm ²)	(N/mm^2)	(N/mm ²)	(%)				
山形鋼	310	443	193000	27.0				
FB-4. 5×125	330	465	194000	26.0				
FB-6. 0×180	343	472	196000	28.8				

表2 試験体一覧

細長比 <i>λ</i>	座屈長さ (mm)	山形鋼寸法 (mm)	補強材寸法 (mm)
80	1873	1583	1563
100	2300	2010	1990
120	2760	2470	2450
140	3220	2930	2910

2.3. 実験結果および考察

図3に座屈耐力と細長比の関係を示す。各補強 材の座屈耐力をプロットしている。また併せて図 中には無補強材のジョンソン・オイラー式から求 めた理論解を破線で示す。無補強材はほぼこの理 論解の曲線上にある。補強タイプAは無補強材に 沿うように細長比の増大に対して最大耐力が低下 しているが、補強タイプBは細長比にかかわらず ほぼ一定の最大耐力となっている。これはタイプ Aの最大耐力の決定が、図4aのように無補強材と 同様に試験体中央での曲げ座屈を起こしたのに対 し、タイプBは図4bのように山形鋼端部の局部座 屈によって決定しているためで、十分な補強効果 を示したものといえる。

図5に耐力増加率と細長比の関係を示す。耐力 増加率は無補強材に対する補強材の最大耐力比で ある。補強タイプAでは1.3~1.9倍の増加となり、 細長比が 120 以上では補強効果が鈍化しているが, 前報1)の細長比が小さい場合は最大で約 1.2 で あったことから,細長比が大きい場合には効果を 示している。一方補強タイプ B では 1.3~3.1 倍と なり細長比が 140 まで直線的に増加しており,十 分な補強効果となっている。

図 6a および 6b に履歴性状を示す。補強タイプ A では、細長比 140 を除いて初期剛性が一致して いる。これは弾性荷重域においては、補強材に軸 方向力が導入されず、山形鋼が曲げ座屈を起こし た始めたときにのみ補剛効果を示すためである。 補強タイプ B は、つづり材を連続材としてつづり ボルトにより山形鋼と固定したため、初期剛性は 細長比が 140 以外は多少高くなっている。

図 4a 補強タイプ A の破壊性状(λ=120)

図 4b 補強タイプ B の破壊性状(λ=120)

-106 -

3. 有限要素解析

<u>3.1. 解析概要</u>

解析は有限要素法に基づく汎用非線形構造解析 ソフトMARCを用いる。実験で用いた等辺山形鋼お よび平鋼にシェル要素を用いる。等辺山形鋼と平 鋼の機械的性質には実験の試験体と同様の表1の 数値とする。拘束条件は、実験におけるナイフエ ッジを用いた山形鋼の弱軸曲げと同様とする。そ の他で用いる条件既往研究心と同様とする。これに より山形鋼が座屈する前では、山形鋼の剛性に平 鋼の剛性が影響を与えない接触要素とし、山形鋼 の座屈とともに平鋼に応力が伝達されるようにす る。実験と同寸法の細長比λ=80,100,120,140(-般化細長比入c=1.02, 1.27, 1.53, 1.78)の解析モ デルとする。図7に等辺山形鋼L-75×75×6のフィ レット部分に平鋼FB-4.5×125を取付角度 θ=45° (a)と θ = 30°(b) で取り付けた断面図を示す。図8 に無補強材と取付金物を5箇所に取り付けた補強 材のアイソメ図を示す。

3.2. 解析結果および考察

図9に無補強実験と無補強解析の履歴性状を示す。 実験と解析の初期剛性がほぼ一致したことから実 験と解析の整合性が確認された。最大耐力について 細長比え=120,140は実験と解析はほぼ同等の数値 になったが、細長比え=80,100は解析と比べ実験の 値の方が高い数値になった。これは細長比え=80,

図8 解析モデルアイソメ図

100 と 120, 140 で座屈方向が逆になったからだと考 えられる。

図10に実験と解析の座屈耐力-細長比関係を示す。 無補強実験、補強タイプA実験と無補強解析、補強 タイプA解析から得られた座屈耐力の各値を実験値 とともに示す。図中の無補強理論式であるジョンソ ン・オイラー式に沿った形で載せている。これによ り無補強実験と無補強解析共にジョンソン・オイラ ー式に沿った形で結果が得られているので、整合性 の確認がとれた。補強タイプA実験と補強タイプA解 析は座屈耐力の各値をプロットしたものがほぼ一 致した。このことからも補強タイプAの整合性の確 認がとれた。

図11に補強タイプAのモデル破壊性状を示す。細 長比え=80はエンドプレート端部で局部座屈してい るが、細長比え=100以降はモデル中央で座屈してい る。応力分布で見ると細長比え=100は平鋼中央から 全体高い応力が分布しているとこがわかる。これに より実験を行った範囲での細長比において,解析で の破壊形状の再現が検証された。

図 12 に補強タイプ A 解析、取付角度 θ =45°と θ =30°の耐力増加率を示す。各解析モデルともに細 長比λc=1.02, 1.27 では補強効果に差が見られない。 細長比 l c=1.53, 1.78 では補強タイプ A は取付角度 θ=45°よりθ=30°の方が耐力増加率の増分が大 きい。特に増分が大きい細長比間はλc=1.27~1.53 間である。平鋼の角度を変えることによって平鋼の 断面二次モーメントが大きくなったため耐力が増 加した。これは平鋼を強軸曲げ方向に傾けたためで あると考えられる。山形鋼の補強率 It/Iv(It:補強 時の山形鋼弱軸に関する断面二次モーメント Iv:山 形鋼弱軸断面二次モーメント)より、取付角度θ =45°の補強率は1.83、θ=30°の補強率は2.24で ある。このことから取付角度 θ =45°より θ =30°の 方が補強率が高いことが確認された。平鋼の取付角 度による補強効果が検証された。

図 13 に無補強解析と補強タイプ A 解析、取付角 度 θ =45°と θ =30°の履歴性状を示す。各補強の細 長比は同様に初期剛性が一致し、無補強に比べ取付 角度 θ =45°, θ =30°の座屈耐力が増加しているこ とがわかる。また座屈後の挙動において細長比 λ =100,120,140 では取付角度 θ =30°の変形性能が最 も高いことが確認された。取付角度による補強効果 が確認された。

図10実験と解析の座屈耐力-細長比関係

(θ=45°,30°)の履歴性状

<u>4.まとめ</u>

本報告では、実験により補強タイプA・Bおよび 有限要素法から補強タイプAの補強材の角度の影響 について、細長比と補強効果の関係を明らかにした。 また有限要素解析は実験結果をよく追跡している ことが確認された。

「参考文献」

1) 植野公友,石井桂吾,小松 博,八木茂治: 組立補剛された山形鋼トラス部材の座屈耐力 に関する研究,日本建築学会大会学術講演梗概 (2015),構造III,p.839~840,2015年8月 2) 植野公友,石井桂吾,小松 博,八木茂治: 組立補剛された山形鋼トラス部材の座屈耐力 に関する研究-有限要素法を用いた数値解析-, 日本大学生産工学部学術講演会第48回学術講 演会,構造・強度