現場重合型 PA6 を用いたサンドイッチ FRTP 材の開発

日大生産工	(院)	○佐々木 裕太郎			
日大生産工		平山 紀夫	日大生産工	坂田	憲泰

1. 緒言

サンドイッチ材は、薄くて高強度な上下表 面材を,軽量で板厚が厚い芯材で結合した構 造で,軽量化が要求される航空機等に使用さ れている.熱可塑性樹脂をマトリックスとし た繊維強化熱可塑性プラスチック(FRTP)は, 熱硬化性樹脂をマトリックスとした繊維強化 熱硬化性プラスチック(FRP)と比較して,二 次加工性, 衝撃特性に優れ, 成形サイクルの 短縮が可能なため,自動車産業をはじめとし て幅広い分野で注目されている.本研究では, サンドイッチ材の表面材に現場重合型ポリア ミド6 (PA6) をマトリックスとしたガラス繊 維強化熱可塑性プラスチック (GFRTP), 芯材 に熱可塑性発泡体を用いて,軽量で二次加工 が可能なサンドイッチ材を一体成形し、曲げ 特性を評価した結果について報告する.

2. サンドイッチ材の成形

2.1 表面材と芯材

GFRTP の強化材には平織のガラス繊維織物 (日東紡績(株)製, WEA-22F)を用い,マトリ ックスには現場重合型 PA6 を用いた.このマ トリックスは,モノマーの ε-カプロラクタムに 重合触媒(原料 A)と重合活性剤(原料 B)を 加熱溶融後,2液を混合することで得られ,成 形現場で重合が可能な熱可塑性樹脂である.芯 材には厚さ10 mm の Gurit® G-PETTM 135 を用 いた.芯材の密度は135 kg/m³, せん断弾性率 は 35 MPa, せん断強度は 1.19 MPa で, 熱変形 温度は 220℃となっている. なお, ε-カプロラ クタムの重合阻害を防止するために, 芯材は成 形前に表面処理を行っている.

2.2 成形方法

ε-カプロラクタムの触媒は,空気中の湿気に より触媒能が失活し,重合が阻害される可能性 があるため,成形は密閉された状態で行う必要 がある¹⁾. そのため,サンドイッチ材の成形に はフィルムで覆った基材に真空ポンプシステ ムで樹脂を注入,含浸させる Fig.1 のインフュ ージョンを用いた.

はじめに,250 mm×150 mm に切断したガラ ス繊維織物 10 枚と芯材を恒温炉内で 110℃,3 時間の条件で乾燥させた.次に,フィルム内で Fig.2(a)の構成となるようにガラス繊維織物と 芯材を積層し,シーラントテープで密閉した. その後,ヒーターで 140℃に加熱された上下金 型に密閉された基材を挟み,フィルム内を真空 ポンプで 50 kPa まで減圧した.最後に,110℃ で加熱溶融した原料 A と原料 B を素早く混合 してフィルム内に注入した.成形後のサンドイ ッチ材を Fig.2(b)に示す.

Development of FRTP sandwich panel using *in-situ* polymerizing polyamide 6 as matrix

Yutaro SASAKI, Norio HIRAYAMA and Kazuhiro SAKATA

Fig.1 Schematic view of infusion

(a) Geometry and dimensions (unit:mm)

3. 曲げ試験

3.1 試験方法

成形したサンドイッチ材の曲げ特性を評価 するために ASTM393-62 を参考にして 3 点曲 げ試験を行った. 試験片のサイズは, 幅 b=35mm, 長さ l=200 mm, 標点間距離 L=160 mm で, 試験片本数は 3 本とした. 変位は標点間の 中央に取付けたダイヤルゲージで測定し, 試験 速度は 4 mm/min で行った. なお, 支点部での 圧縮破壊を防止するために, 支点部の表面材に は 35 mm× 20 mm×3 mm のゴムラバーをはり つけた.

3.2 試験結果および考察

Fig.3 に代表的な荷重-線図を示す.サンド イッチ材の最大荷重の平均値は 0.768 kN とな り,全ての試験片で最大荷重時に芯材がせん断 破壊した.その後,き裂が表面材と芯材の界面 に進展し,荷重が徐々に低下する挙動を示した. また, Fig.3 には表面材と芯材の接着性を評価 するために、サンドイッチ材の最大たわみの理 論値を計算した結果についても併記している. 最大たわみの理論値は式(1)を用いて計算し た.右辺の第一項は曲げ変形によるたわみ、第 二項はせん断変形によるたわみである.

$$\delta = \frac{PL^3}{48\left(\frac{E_f b t_f t_c^2}{2} + E_f b t_f^2 t_c + \frac{2E_f b t_f^3}{3}\right)} + \frac{PL}{\frac{4bG_c(t_f + t_c)^2}{t_c}}$$
(1)

ここで, *E*_fは表面材の弾性率, *G*_cは芯材のせ ん断弾性率, *t*_fと*t*_cは表面材と芯材の厚さを表 す.荷重 0.3 kN までの線形領域内において, 計算値と実験値には約 15%の差が生じた. 今 後,芯材の種類や表面処理等の試作実験を行い, 理論値との差について検討を行う.

Fig.3 Load-deflection curves

- 4. 結言
- 芯材に熱可塑性発泡体を、マトリックス に現場重合型 PA6 を用いて、一体成形型 の GFRTP 製サンドイッチ材を成形する ことができた。
- 2) 3 点曲げ試験において、全ての試験片で破壊モードは芯材でのせん断破壊となった. 一方、最大たわみの理論値と実験値は線形 領域内で約 15%の差が生じたことから、表 面材と芯材の接着性向上については、今後の課題となる.

参考文献

 1) 中村幸一, 邉吾一, 平山紀夫, 西田裕文, 日 本複合材料学会誌, 37, 5 (2011), 182-189.
2) 宮入裕夫, サンドイッチ構造, 養賢堂 (2008), 140-146.