CuAlO₂/IGZO の界面特性

日大生産工(院) 〇岩崎 真宝 日大生産工(学部) 酒井 作周

日大生産工 清水 耕作

1 まえがき

太陽電池は、再生可能なエネルギとして注目 されている。現在主流のSi系太陽電池は太陽ス ペクトルにおける約400nm~800nmの可視光を 吸収して発電を行っている。しかし、太陽光ス ペクトル中には400nm以下の紫外光が4~6% を占める。Si系シリコン太陽電池では高エネル ギを持つ短波長の近紫外光吸収は発電に寄与 していないのみならず、余剰フォトンエネルギ 効果で発電量が低下する。

本研究では、酸化物半導体材料のワイドバン ドギャップを利用して近紫外光を吸収し発電 する透明太陽電池の作製を行う。透明太陽電池 の高性能化のために、p型酸化物半導体である 非晶質アルミン酸銅(以降CuAlO₂)^[1]の条件出 しを行う。また、n型酸化物半導体である InGaZnO₄(以降IGZO)とCuAlO₂を用いたデバイ ス構造を検討する。

2 実験方法および測定方法

2-1 CuAlO2の条件出し

DC マグネトロンスパッタ法により、CuAlO₂ および IGZO 薄膜を成膜する。タウツ法を用 いてバンドギャップ(以降 Eg)を算出する。ま た 350 ℃、1h でアニール処理を行った後 Eg を評価した。電極材料にはクロム(Cr)を使 用し、抵抗加熱真空蒸着法を用いて堆積させ、 導電率測定を行う。暗導電率の測定は暗室内 で行い、光照射時はソーラシミュレータを用 いて AM1.5 の光を照射しながら測定を行う。 2-2 pn ジャンクションの作製

図1に作製した素子構造を示す。同じ成膜 条件で図1(a)は、IGZOを成膜し、その後

CuAlO₂を成膜した構造である。図 1(b)は、 CuAlO₂を成膜し、その後 IGZO を成膜した構 造である。I-V 測定により構造の違いによる 整流比の違いについて評価を行う。

3 実験結果および検討 3-1 CuAIO₂の条件出し

表 1 CuAlO₂の条件出し

Target			CuAlO ₂		
Gas flow rate [sccm]	02	0	1.0	10	
	Ar	100	100	100	
Power [W]		30	30	30	
Growth Pressure [Pa]		0.50	0.50	0.50	
Thickness[nm]		233	391	367	
Growth time [min]		90	180	180	
Deposition rate [nm/min]		2.59	2.17	2.04	
Eg (as depo) [eV]		2.04	1.60	1.47	
Eg(annealed) [eV]		2.05	2.12	2.16	
Dark Conductivity	S/cm]	2.50×10 ⁻¹¹	1.13×10 ⁻⁸	6.40×10 ⁻⁸	
Illuminated Conductivity[S/cm]		4 68×10 ⁻¹¹	3.81×10 ⁻⁷	1.04×10^{-7}	

Fabrication and Characterization of CuAlO₂/IGZO for solar cell application

Masataka IWASAKI, Sakuchika SAKAI, Kousaku SHIMIZU

CuAlO₂の条件出しの結果を表1に示す。表1 は、O₂流量0~10 sccmまで変化させたときの膜 厚、バンドギャップ、導電率の結果である。図 2に成膜したCuAlO2を示す。図2(a)がアニール 前であり、図2(b)はアニール後の薄膜である。

(a)as deposited (b) annealed 図 2 CuAlO₂薄膜

表1より、Oっ流量が増加するほど堆積レート は低下し、アニール前のバンドギャップは狭く なる。アニール後のバンドギャップは広くなる。 堆積レートの減少は、Oっ流量の増加によりアル ゴン (Ar) イオンの比率が低下したため、堆積 レートが低下したと考えられる。アニール前の バンドギャップは、薄膜中の酸素の増加により、 CuOの比が増えたため狭くなり、アニールを行 うことにより、酸素が抜けたためアニール後の バンドギャップが広がったと考えられる。CuO は一般に褐色の半導体であり、バンドギャップ が1.8eVである。酸素を供給しなかった場合は、 薄膜中の酸素比が低いため導電率が減少した と考えられる。

3-2 pnジャンクションの作製

Г

CuAlO2及びIGZOの成膜条件を表2に示す。

去2 成 間 条 仕

<u>我</u> 2,	风辰不日		
Target		CuAlO ₂	IGZO
ow roto [coom]	O_2	10	1.0

Target			1620
Cas flow rate [seem]	O ₂	10	1.0
Gas now rate [seem]	Ar	100	100
Power [W]		30	100
Growth Pressure	0.5	1.0	
Thickness[nm]		300	300
Growth time [min]		150	12

CuAlO₂の条件出しより、アニール後のバンド ギャップが広く暗時導電率が高いO2流量10 sccmで成膜を行う。図1に示した素子構造で製 作し、図3(a)に図1(a)、図3(b)に図1(b)の素子を 示す。I-V測定を行った結果を図4に示す。

図4より、図1(a)のCuAlO₂を後に成膜した 素子の整流比はほとんどなく、図1(b)の CuAlO₂を先に成膜した素子の整流比は約2 桁であった。整流比が高く得られない原因は、 バルク中の欠陥が多量にあることで空乏層が 広がっていないと考えられる。

(a) CuAlO₂/IGZO (b) IGZO/CuAlO₂ 図 3 pn ジャンクション素子

4 まとめ

CuAlO2のO2流量に対する依存性評価を行っ た。Oっ流量を増加させアニール処理を行うこと によりバンドギャップが広く、導電率が10-8 S/cmと酸素を入れないで行う場合の10⁻¹¹ S/cm に比べて3桁高くなることが分かった。

順序を変えてpnジャンクションの作製を行 った。CuAlO2を後に成膜すると整流性が得ら れず、CuAlO2を先に成膜すると2桁の整流性が 得られることが分かった。透明太陽電池に使用 するためには、さらに高い整流性が必要である。

今後は成膜条件の再検討、アニール処理の温 度・時間変化による特性の変化、膜厚依存性を 検討することによりCuAlO2及びIGZOの性能向 上を行い、pnジャンクションの性能向上を図る。

「参考文献」

[1]Wu Suzhen, Deng Zanhong, Dong Weiwei, Shao Jingzhen, Fang Xiaodong, Jornal of Semiconductor April 2014, pp043001-1