1 まえがき

ドロマイト (CaMg(CO₃)₂) は炭酸カルシウ ム (CaCO₃) と炭酸マグネシウム (MgCO₃) が1:1のモル比で組み合わされた複塩で、カル サイト構造を示す菱面体中心のCaがMgに置 き換わった構造を有している(Fig.1). しか しながら世界各地で産出される天然ドロマイ トは、化学組成がCaMg(CO₃)₂ではなく、SiO₂、 Fe₂O₃, Al₂O₃などをわずかながら含有してお り、Ca/Mg比も1でないことが多い.一般に複 塩構造を示す物質は、固溶体と比較して物理的 性質や化学的性質が高いことが知られている. ドロマイトの場合は単塩のカルサイトと比較 すると, 密度, 硬度, 屈折率が高い. 現在, ド ロマイトは主に製鉄用耐火材, ガラス, 苦土石 灰肥料および土建用骨材(道路用, コンクリー ト用)として利用されているが、この複塩構造 または物性を利用した新たな用途の開発が期 待される.一方,ドロマイトの合成については, 水熱合成,加圧合成, Ca²⁺およびMg²⁺イオン を含む水溶液にHCO3をたはCO32イオンを添 加する溶液合成といった合成報告が多くある が,現状として単一合成の報告が少ない.また, 長時間, 高圧力下, 高温といった合成条件が多 く,低エネルギー,短時間でドロマイト単一相 が得られる新規合成プロセスの確立が重要で あると考えられる. そこで、本研究は、水や液 体に周波数20kHz以上の超音波を照射して生 じるキャビテーションを利用したドロマイト の新規合成を目的とした. 超音波により発生す るキャビテーションは,高温,高圧,高速流動 の極限状態の化学反応場を形成する.まずは、 ドロマイトの単一合成を目的とした種々の超 音波照射条件の検討を行った.また,無機蛍光 体の母体結晶としてのドロマイトの利用に着 目した. 複塩構造を母体結晶とした報告例は少 なく、蛍光特性についても未解明な部分が多い. 天然ドロマイトを母体結晶に用いてドロマイ ト蛍光体を合成する方法もあるが,この場合キ ラー元素となるFeが天然ドロマイト中には存

日大生産工 〇亀井 真之介 古川 茂樹

在するため、ドロマイト蛍光体の合成が行えた としても蛍光特性に大きな影響を及ぼす可能 性がある.そこで、超音波照射合成時に各種希 土類イオンをドロマイト構造に固溶させるこ とを目的とし、ドロマイト蛍光体の合成につい ての検討も行った.

2 実験方法および測定方法

0.1mol・dm⁻³の塩化カルシウムおよび塩化 マグネシウム水溶液と0.2mol・dm⁻³の炭酸ナ トリウム水溶液を調製し,ウォーターバスを用 いて80°Cに保温後,これらを速やかに混合し 周波数20kHz,出力40Wの超音波照射を5~60 分行った.反応終了後,ろ過,洗浄,乾燥を行 い試料とした.蛍光体の合成については,希土 類イオンに,Eu,Tb,Smの塩化物試薬を用い て,塩化カルシウムおよび塩化マグネシウム市 う溶液にRE/(RE+Ca)モル比0.0005,0.001, 0.005,0.01となるように調製し,同様の手順 で合成を行った.得られた試料のキャラクタリ ゼーションは,結晶構造解析にX線回折,蛍光 特性については蛍光分光光度計を用いて行っ た.

Fig.1 Crystal structure of Dolomite.

Improvement of Synthesis Process for Effective Use of Dolomite Shinnosuke KAMEI and Shigeki FURUKAWA

3 結果および検討

Fig.2に超音波合成照射させて得られた生成 物のX線回折図形を示す. 超音波を照射させる ことにより、目的物であるドロマイト構造が得 られたことを確かめた. つぎに, このドロマイ トの結晶構造に希土類イオンを固溶させるこ とが可能かどうかを検討した. Fig.3にドロマ イトに各希土類イオンを添加させ同様の超音 波合成を行った生成物のX線回折図形を示す. いずれの希土類イオンを用いて超音波合成を 行っても、ドロマイトに帰属される回折パター ンが確認された.他の固溶モル比においても、 同様の回折パターンを確認し、希土類イオンに 関わる副生成物は確認されなかった.これより, 希土類イオンをドロマイトの超音波照射合成 時に用いても、ドロマイトの単一相を合成する ことが可能であった. Fig.4にEu³⁺イオンをド ロマイトに固溶させた各モル比におけるドロ マイト蛍光体の発光スペクトルを示す.いずれ のモル比においてもEu³⁺イオンに帰属される 発光バンド (⁵D₀ → ⁷F_j, j=0,1,2,3,4) が観察 された. これより, Eu³⁺イオンがドロマイト の構造内に固溶していることを確かめた.また、 他の希土類イオンであるTb³⁺イオン,Sm³⁺イ オンについてもそれぞれのイオンに帰属され る発光バンドが観察された. $^{5}D_{0} \rightarrow ^{7}F_{i}$ 遷移に 帰属される発光バンドは磁気双極子遷移によ るもので、反転対称性を持つサイトに4f-4f準 位間の双極子遷移を行うEu³⁺イオンをはじめ とする希土類イオンを固溶させると、従来とは 全く異なった発光特性を示すことが期待でき る. Eu³⁺イオンを固溶させたドロマイトの場 合は、各モル比と比較して0.005と0.01のとき、 この $^{\delta}D_{0} \rightarrow {}^{7}F_{I}$ 遷移に帰属される発光バンド が強く観測された.

4 まとめ

超音波照射合成により,従来の合成手段と比較して,簡便に短時間反応でドロマイト単相を 得ることが可能であったことを確かめた.

ドロマイトの有効利用として、ドロマイト蛍 光体の合成を検討した. Eu³⁺, Tb³⁺, Sm³⁺イ オンを同様に超音波照射合成させることによ り、ドロマイトに固溶させることが可能であっ た.

これらのドロマイト蛍光体の蛍光特性については、各希土類イオンに帰属される発光バンドが観察された.

-496-