FIRE アルゴリズムを用いた順序回路のテスト不可能故障判定の評価

日大生産工(学部)	〇二関	森人	日大生産工	山崎	紘史
日大生産工	細川	利典	京都産大	吉村	正義

1. はじめに

近年,半導体微細化技術の進歩に伴い,超大規模 集積回路(Very Large Scale Integrated circuit : VLSI)が大規模化・複雑化し、テストパタン生成時間 の増加が問題となっており、テストパタン生成の高 速化,容易化が求められている.

テストパタン生成を容易化する技術の一つとして, 回路内のフリップフロップ(Flip-Flop: FF)を外部か ら制御,観測可能とするスキャン設計[1, 2]が提案さ れている.しかしながら,スキャン設計が施された 回路は容易に内部状態を外部に出力することが可能 なため,セキュリティを考慮したテスト容易化設計 の回路に対してはスキャン設計を行うことにより, 機密情報の流出などに繋がる可能性が高くなる.そ のため,内部状態を外部から直接的に制御,観測を 出来ない条件の元でテストパタン生成を行う非スキ ャンベーステスト[3]が提案されている.

スキャンベースのテストパタン生成では FF の出 力信号線を疑似外部入力(Pseudo Primary Input: PPI), FF の入力信号線を疑似外部出力(Pseudo Primary Output: PPO)として組合せ回路と同様の テストパタン生成が可能である.しかしながら,非 スキャンベースのテストパタン生成では,FF の出力 信号線に対して値割当てが発生した場合,一時刻前 の回路(FF の入力信号線)に対して正当化処理を適用 する必要がある.のため順序回路のテストパタン生 成アルゴリズム[4]を用いる必要がある.

順序回路のテストパタン生成では、内部状態を外 部入力のみで設定するため、スキャン設計なしでは 高い故障検出率を得ることが困難である.また、テ スト不可能故障に対してテストパタン生成を行おう と、テスト不可能故障判定に多大な時間を必要とす る.そのため、テストパタン生成時間を削減するた めに、テスト不可能故障をあらかじめ判定する様々 な手法が提案されている[5-8].

本論文では,従来のテスト不可能故障を判定する 手法として,回路構造に着目し含意操作による不可 能状態からテスト不可能故障を判定する FIRE アル ゴリズム[5]と拡張 FIRE アルゴリズム[6]を実装し, その評価を行う.

本論文の構成は以下の通りである.第2章では, 今回評価を行うテスト不可能故障判定法である FIRE 及び拡張 FIRE アルゴリズムで用いる直接含 意操作[2][3]について述べる.第3章では FIRE 及び 拡張 FIRE アルゴリズムを高速化するために用いる 静的学習[3]について述べる.第4章では FIRE アル ゴリズムについて述べる.第5章では拡張 FIRE ア ルゴリズムについて述べる.第6章では実験結果を 示し,第7章では本論文についてまとめる.

2. 直接含意操作

直接含意操作とは、ゲートの入出力信号線の接続 関係から値を求めることである.また、直接含意操 作は前方含意操作と後方含意操作に分けられる.図1 に2入力ANDゲートに対する直接含意操作の例を示 す.図1(a)は前方含意操作の例である.ANDゲート は一方の入力に0が割当てられたとき出力が0とな るため、信号線 a の値が0のとき出力信号線 c の値 は0となる.このように信号線の入力側から出力側 に値を決定する処理が前方含意操作である.図1(b) は後方含意操作の例である.ANDゲートの出力が1 となるためには全ての入力が1でなくてはならない ため、信号線 c の値が1のときは信号線 a, b の値は 1となる.このように出力側から入力側に値を決定す る処理が後方含意操作である.

An Evaluation of Untestable Fault Identification for Sequential Circuits Using FIRE Algorithm

Morito NISEKI, Hiroshi YAMAZAKI, Toshinori HOSOKAWA and Masayoshi YOSHIMURA

3. 静的学習

静的学習とは直接含意の結果から固定値,接含意 を求める処理で,繰り返し実行することでより多く の間接含意を得られる.静的学習の処理では回路内 の各信号線について,その信号線の値を0に設定し た含意操作と1に設定した含意操作をそれぞれ実行 する.本論文では静的学習で2つの学習規則と対偶 規則,固定値学習を用いる.3章では3.1節で学習 規則を説明し,3.2節で対偶規則について説明する. 3.3節では固定値学習について説明する.

3.1. 学習規則

学習規則とは,静的学習を行うことにより,直接 含意の結果から間接含意を保持する条件である本論 文では,学習規則Aまたは学習規則Bのどちらか一 方を満たす直接含意が存在する場合,間接含意を保 持する.なお,それぞれの間接含意の保持について は対偶規則を適用させている.

[学習規則 A] 信号線 s の値を v (v \in {0, 1})とする含 意操作により、ある 2 入力以上のゲートの出力信号 線 t が値 w (w \in {0, 1})をとり、かつ、

wがそのゲートの非制御値であるとき,

間接含意として"t = wならばs = v"を保存する. こ こで、非制御値とは、ANDゲートの出力に対する値 である1のように、ゲート入力値がすべて決定され たときにゲート出力値が決定される値のことである. [学習規則 B] 信号線 s の値を v (v \in {0, 1})とする含 意操作において、後方への含意操作により、ある2 入力以上のゲート入力信号線 t の値が w (w \in {0, 1}) をとり、かつ、w がそのゲートの制御値であるとき、 間接含意として"t = wならばs = v"を保存する.

3.2. 対偶規則

対偶規則とはある命題が真のとき,対偶も真であ るという規則である.図2に対偶規則の例を示す. はじめに,図2のように信号線bの値を0とし,前 方含意を行うと信号線fの値が0となる.これにより "b=0ならばf=0"という命題が真になる.対偶規則 を適用すると"f=1ならばb=1"という命題が成り立 ち,間接含意を得ることができる.

図2. 対偶規則の例

3.3. 固定値学習

固定値学習とは含意操作中に値の矛盾が発生した 場合,はじめに信号線に割当てた値と逆の値を固定 の値として決定するものである.図3に固定値学習 の例を示す.信号線 e の値を0とし後方含意を行う と,信号線 d, c, a の値は0となるが,信号線 d は NOT ゲートのため信号線 b, a の値が1となり,信 号線 a において値が矛盾することがわかる.これに より信号線 e に0を割当てることは不可能なため, 信号線 e の値は1に固定される.

4. FIRE アルゴリズム

文献[5]で提案されている FIRE アルゴリズムは, 回路構造に着目し,ある信号線に 0, 1 両方の値を 割当てる必要のある故障をテスト不可能故障と判定 する手法である.ここでは,ある信号線 x に 0 を割 当てる必要がある故障集合を set[x, 0],1 を割当て る必要がある故障集合を set[x, 1]と表す.また拡張 FIRE アルゴリズムにおいても同様に示す.

図4に FIRE によるテスト不可能故障判定の例を 示す.図4の回路において信号線aに値0と1の両 方を割当てる必要のある故障を考える.まず信号線 a に0を割当てる必要のある故障集合(set[a, 0])を求め る. このとき図 4(a)に示すように a に 1 を割当てて 含意操作を行う. a=1 より一意に値が決定する信号 線は、一意に決定する値を故障値とする縮退故障の 検出が不可能である. そのため, これらの故障は a=1 が原因で検出不可能な故障であり、a=0の割当てが 故障検出に必要な故障である. 図 4(a)において, 信 号線 a の 1 縮退故障(以下, a/1 と略), a_c/1, f/1 が, a=0が故障検出に必要な故障集合である.そのため, set[a, 0]は a/1, a_c/1, f/1 と求まる. また, 図 4(b) に示すように、a=1を必要とする故障も信号線aに0 を割当てて含意操作を行い,故障集合 set[a, 1])を得 る. このとき set[a, 1]より, 各ゲートの制御値とな っている値がないかを調べると,信号線 a_c の値に0 が割当てられていることから、信号線 a_c の値がゲ ートG1の制御値となっていることが分かる.同様に, 信号線 c の値にゲート G2 の制御値, 信号線 e, f の 値にゲート G3 の制御値が割当てられていることが 分かる.このことから、各ゲートにおいて制御値が 割当てられていない入力信号線に縮退故障があった 場合,制御値によって伝搬不可能となる.そのため, a=1を必要とする故障集合(set[a, 1])は図 4(b)に描か れた信号線値だけでなく、b/0, b/1, d/0, d/1, e/1, f/1 も含まれる. そのため, set[a, 1]は a/0, a_c/0,

b/0, b/1, c/1, d/0, d/1, e/0, e/1, f/0, f/1, g/0 と 求まる. そして set[a, 0]と set[a, 1]の積集合から, 図 4(c)に示すように f/1 がテスト不可能故障であると 判定できる.

5. 拡張 FIRE アルゴリズム

第4章で述べた FIRE アルゴリズムは各信号線に おける0,1を必要とする故障をテスト不可能故障と 判定したのに対し,文献[6]の拡張 FIRE アルゴリズ ムでは論理ゲートの不可能状態からテスト不可能故 障を判定する.論理ゲートの不可能状態の例として, 2入力 AND ゲートの不可能状態の例を図5に示す.

図5に示したように、論理ゲートの不可能状態と は多入力ゲートに対し起こるものである.不可能状 態の種類としては、図5の不可能状態:1と不可能状 態:2のようにゲートのいずれかの入力が制御値であ り、ゲートの出力値がゲートのすべての入力が非制 御値のときに決定する値となっている状態と、図5 の不可能状態:3のようにすべての入力が非制御値で あり、出力値を入力が制御値のときに決定する値と なっている状態の2種類がある.

(c) テスト不可能故障

図 4. FIRE によるテスト不可能故障判定

しかしながら、不可能状態:1のときに信号線 a=0 と信号線 c=1 から含意操作を行うと、a=0 \Rightarrow c=0, c=1 \Rightarrow a=1 といった関係が出てくる.このことから, この不可能状態によって得られるテスト不可能故障 集 合 は (set[a,0] \cap set[a,1]) \cup (set[c,0] \cap set[c,1])となり、これは FIRE アルゴリズムによって 判定されていることが分かる.これにより、拡張 FIRE アルゴリズムに用いる不可能状態は図 5 の不 可能状態:3 のようなすべての入力が非制御値であり、 出力値を入力が制御値のときに決定する値となって いる状態となる.

表1を用いて拡張 FIRE アルゴリズムの例を示す. 表1は図6のG1における各入出力信号線の0割当 てを必要とする故障集合(set[a, 0], set[b, 0], set[c, 0]),1割当てを必要とする故障集合(set[a, 1], set[b, 1], set[c, 1])をまとめたものである.

表1に示した故障集合に対しFIRE アルゴリズム を用いた場合, set[a, 0]と set[a, 1]の積集合と, set[b, 0]と set[b, 1]の積集合と, set[c, 0]と set[c, 1]の積 集合は,空集合となるためテスト不可能故障を判定 することができない.しかしながら,拡張FIRE ア ルゴリズムを用いた場合,すべての入力の非制御値 と入力が制御値により決定する出力から求めるため, G1 の場合は set[a, 1], set[b, 1], set[c, 0]の 3 つの故障集合の積集合を求めることで,テスト不可 能故障を判定することができる.今回の例では表1 に示すように,この3つの積集合からhの1縮退故 障がテスト不可能故障であると判定できる.

図 5. 2入力 AND ゲートの不可能状態例

図 6. 拡張 FIRE アルゴリズム例題回路

表 1.	AND ゲートに対する拡張 FIRE アルゴリ
	ズムによるテスト不可能故障判定

set[a,0]	a/1, a_c/1, a_h/1
set[a,1]	a/0, a_c/0, a_h/0, c/0, e/0, e/1, f/0, f/1, g/0, h/1
set[b,0]	b/1, b_c/1, b_f/1
set[b,1]	b/0, b_c, b_f/0, c/0, e/1, f/1, g/0, h/0, h/1
set[c,0]	a/1, b/1, a_c/1, a_h/1, a_h/0, b_f/1, b_c/1, c/1, e/0, f/0, f/1, g/0, h/0, h/1
set[c,1]	c/0, e/1

6. 実験結果

本論文ではテスト不可能故障の判定法として, FIRE アルゴリズム, 拡張 FIRE アルゴリズムの評価 を行った.実験対象回路は ISCAS'89 ベンチマーク 回路に対して実験を行った.

表 2 に実験結果を示す. 左から回路名,時間展開 数,本論文で実装した FIRE アルゴリズムによるテ スト不可能故障数,本論文で実装した拡張 FIRE ア ルゴリズムによるテスト不可能故障数, 文献[6]によ る FIRE アルゴリズムでのテスト不可能故障数, 文 献[6]による拡張 FIRE アルゴリズムでのテスト不可 能故障数である.表2から、ほとんどの回路におい て、文献[6]で示されているテスト不可能故障数と同 数のテスト不可能故障が判定された.また,s526, s1238, s1423 等の回路では, 文献[6]と本論で判定さ れたテスト不可能故障数が異なる.これは、文献[6] と本論文で判定された静的学習の結果が異なるため と考えられる. また, s9234, s13207, s15850 にお いては、文献[6]において比較できる実験結果が記載 されていなかったため、本論文の結果のみを記載し ている.

7. おわりに

本論文ではテスト不可能故障判定アルゴリズムで ある FIRE アルゴリズムと拡張 FIRE アルゴリズム を説明し,上記アルゴリズムを実装した.また,実 装した FIRE アルゴリズムと拡張 FIRE アルゴリズ ムに対して実験を行い,文献[6]とのテスト不可能故 障数についての評価を行った.今後の課題として, 静的学習の精度を高めること,無効状態を用いたテ スト不可能故障判定などのその他のテスト不可能故 障判定アルゴリズムとの組合せを検討し,更に多く のテスト不可能故障の判定を行うことが挙げられる.

「参考文献」

 H. Fujiwara "Logic Testing and Design for Testability", The MIT Press, 1985

- M. Abramovici, M. A. Breuer and A.
 D. Friedman "Digital systems testing and testable design", IEEE Press, 1995
- [3]. Dong Xiang, Yi Xu and H. Fujiwara "Non-Scan Design for Testability for Synchronous Sequential Circuits Based on Conflict Analysis", Test Conference, 2000. Proceedings. International
- [4]. Michael H. Schulz, Erwin Trischler, Thomas M. Sapfert, "SOCRATES : a highly efficient automatic test pattern generation system," IEEE Transactions on Computer-Aided Design, Vol. 7, No1, pp. 126-137, Jan 1988.
- [5]. M. A. Iyer, D. Long, and M. Abramvici, "FIRE : a fault independent combinational redundancy identification algorithm," IEEE Trans, VLSI systems, pp. 295-301, June 1996.
- [6]. Michael S. Hsial, "Maximizing Impossibilities for Untestable Fault Identification," IEEE Press, pp. 949-953, Mar 2002.
- [7]. Vishwani D. Agrawal and Srimat T. Chakradhar , "Combinational ATPG theorems for identifying untestable faults in sequential circuits," IEEE Trans, Vol. 14, pp. 1155-1160, Sep 1995.
- [8]. Xiao Liu and Michael S . Hsiao , "Constrained ATPG for Broadside Transition Testing," IEEE Press, pp. 175-182, Nov 2003.

表 2. FIRE 及び拡張 FIRE アルゴリズムによる テスト不可能故障判定数

	時間展開数	テスト不可能故障数				
回路名		本論文	文献[6]	本論文	文献[6]	
		FIRE	FIRE	拡張FIRE	拡張FIRE	
s298	5	3	3	6	6	
s344	3	3	3	4	4	
s400	2	8	8	10	10	
s526	5	6	2	11	11	
s713	2	32	32	38	38	
s1238	2	6	9	18	21	
s1423	2	10	9	14	14	
s5378	3	769	796	867	884	
s9234	2	2987		3247		
s13207	3	4672		5278		
s15850	3	4231		4576		
s38417	3	335	328	470	466	