1.はじめに 本研究は、1700~1800℃の高温溶 融帯で溶融処理された一般廃棄物から排出さ れる溶融スラグの利用について検討を行った ものである¹⁾。溶融スラグは、再生コンクリー トとともに併用し、再生コンクリートの細骨材 における普通細骨材(天然砂)を溶融スラグで 置換して利用した。溶融スラグ再生コンクリー ト梁部材の耐久性を把握する観点から、本研究 はコンクリート打設後から梁部材を屋外に暴 露し、材齢5年目に梁部材を載荷して、溶融ス ラグ再生コンクリート梁部材の付着性状につ いて検討を行った。

2. 実験概要 表-1 に試験体詳細を,また表-2 に調合表を示す。本研究では付着性状を知る ための基礎的研究として,コンクリートの粗 骨材は普通粗骨材(砕石)を中品質再生粗骨 材²⁾で 50%置換した。細骨材は普通細骨材

(天然砂)を溶融スラグで置換する割合(以 下,置換率という)を25%,50%,75%, 100%と変化させ,溶融スラグの置換率の変化 が溶融スラグ再生コンクリート梁部材の付着 割裂強度にどのような影響を及ぼすのか検討 を行った。経年にともなう付着割裂強度の差 違を検討するため,屋外暴露してから5年間 経過する途中における実験棟内に保存した梁 部材の5週時,1年時,2年時の結果との比較 を行った^{3)~5)}。本研究で用いた溶融スラグは 千葉県習志野市芝園清掃工場のガス化高温溶 融一体型直接溶融炉により製造されたもので 日大生産工

○師橋 憲貴

表-1 試験体詳細

試験体名	シリーズ 置換率	載荷時期
1) RMOS	RMOSシリーズ:	材齢5週
2) RMOS1K	中品賀再生租官材50%・ 砕石50% 	1年 保存後
3) RMOS2K	天然砂100%	2年 保存後
4) RM25S		材齢5週
5) RM25S1K	RM25Sシリース: 中品質再生粗骨材50%・	1年 保存後
6) RM25S2K	(存在 50%) 溶融スラグ25%・ 天妖砂75%	2年 保存後
7) RM25S5E	JC///10/10/10	5年 暴露後
8) RM50S	RM50Sシリーズ: 中品質再生担骨材50%・	材齢5週
9) RM50S1K		1年 保存後
10) RM50S2K	作4150% 溶融スラグ50%・ 王妖 ₁ 50%	2年 保存後
11) RM50S5E		5年 暴露後
12) RM75S	RM75Sシリーズ: 中品質再生粗骨材50%・ 砕石50% 溶融スラグ75%・ 王鉄D25%	材齢5週
13) RM75S1K		1年 保存後
14) RM75S2K		2年 保存後
15) RM75S5E	JC///1920/0	5年 暴露後
16) RM100S		材齢5週
17) RM100S1K	RM100Sシリーズ: 中品質再生粗骨材50%・	1年 保存後
18) RM100S2K	存在 50% 溶融スラグ100%・ 王鉄 砂0%	2年 保存後
19) RM100S5E	入 然初 20 /0	5年 暴露後

 置換率:普通骨材を再生骨材あるいは 溶融スラグで置換する割合
b×D=300×300mm
重ね継手長さ*I*s=30d_b=570mm

吸水率は 0.96%および 0.38%となってお り, 普通細骨材(天然砂)に比較し小さい。付

Bond Properties of Melt-solidified Slag Aggregate Recycled Concrete Beams Field-exposed for Five Years

Noritaka MOROHASHI

着割裂強度の検討にあたっては,溶融スラグ を利用していない梁部材の2年時までの結果 とも比較した。

図-1 に試験体形状を,また図-2 に試験体 断面を示す。試験体は純曲げ区間の下端に長 さ 30d_b(d_b:主筋の公称直径)の重ね継手を設 け付着性状を検討する梁形式とした。主筋は 上端と下端ともに 4-D19(SD345)を配筋し,

主筋から側面および底面までのかぶり厚さは 30mmとしてサイドスプリット型の付着割裂破 壊を想定して付着割裂強度の検討を行った。

 3. コンクリート強度および乾燥収縮率 図−3 に材齢が5年経過するまでのコンクリートの 圧縮強度の推移を、また図-4 に乾燥収縮率の 推移を示す。圧縮強度の測定は封かん養生(厚 地のビニールを用いて密閉)とした円柱供試体 を用い, また乾燥収縮率の測定は JIS A 1129 コンクリートの長さ変化試験方法で用いられ る 100mm×100mm×400mm の長さ変化角柱供試 体を恒温恒湿室(室温 20℃±2℃,湿度 60%± 5%)に保存して行った。圧縮強度の推移につい てみるとばらつきがあるものの 5 週実験時以 降1年実験時および2年実験時は圧縮強度の 上昇が認められたが、5年実験時は2年実験時 と比較して圧縮強度の低下が認められた。これ は、材齢の経過に際し封かん養生としたテスト ピースの水分逸散による乾燥収縮にともない 強度が低下したものと考える。乾燥収縮率の推 移についてみると5週実験時,26週,52週(1 年実験時)に掛けて収縮率の増加が認められる が,1年実験時以降5年実験時に至るまでは乾 燥収縮率は横ばいとなり,乾燥収縮率の増加は 僅かであった。普通細骨材(天然砂)をごみ溶融 スラグで25%置換したRM25S(○印)は5年実 験時で1000×10⁻⁶を上回る値となった。一方, 普通細骨材(天然砂)をごみ溶融スラグで 100%置換した RM100S (△印) は5 年実験時で 600×10⁻⁶を上回る程度で、置換率が大きい場

表-2 調合表

	₩∕C (%)	単位質量(kg/m ³)					
シリーズ		水 セメント		細骨材		粗骨材	
			天然砂	溶融 スラグ	砕石	再生	
RMOS	65.0	180	277	816	I	503	455
RM25S	65.0	184	283	653	238	473	424
RM50S	72.5	184	254	448	490	473	424
RM75S	65.0	184	283	218	713	473	424
RM100S	69.4	184	265	-	968	473	424
		• .					

呼び強度:18N/mm²,粗骨材の最大寸法:20mm,指定スランプ:18cm

表-3 骨材の品質

	シリーズ		絶乾密度 (g/cm ³)	実績率 (%)	吸水率 (%)
_		砕石	2.70	61.5	0.60
	RMOS	再生粗骨材	2.37	62.5	4.58
		天然砂	2.54	66.7	1.96
		砕石	2.70	60.9	0.74
	RM25S	再生粗骨材	2.36	61.7	4.58
	RM75S	天然砂	2.54	68.3	1.85
		溶融スラグ	2.79	61.3	0.96
	RM50S	砕石	2.72	63.8	0.77
		再生粗骨材	2.33	61.8	5.40
	RM100S	天然砂	2.51	66.2	2.05
		溶融スラグ	2.82	61.3	0.38

図-1 試験体形状

曲げ降伏以前の付着割裂破壊,5年実験時は曲 げ降伏が先行する曲げ降伏後の付着割裂破壊 となった。1年実験時および2年実験時は試験

-40 -

体により曲げ降伏前の付着割裂破壊および曲 げ降伏後の付着割裂破壊が混在する結果とな った。図-5 に荷重-変位曲線を RM75S シリー ズを例に示した。加力は2点集中による正負繰 返し載荷を行い、加力の履歴は主筋の応力度 σ_tを100N/mm²ずつ増加させ、それぞれの応力. 度で各1回正負繰返しを行った。RM75Sシリー ズにおいては5週実験時,1年実験時および2 年実験時が曲げ降伏前の付着割裂破壊となり, 5 年実験時は曲げ降伏後の付着割裂破壊とな った。曲線が重なって解かり難いが,正加力時 の曲げ剛性は,破線の5週実験時に比較して1 年実験時,2年実験時および5年実験時の剛性 が若干低くなる傾向が認められた。これは5週 実験時以降では乾燥収縮ひび割れによるき裂 の発生により剛性が低下したものと考える。

4.2. 付着割裂強度の評価 付着割裂強度は式 (1)により求めた。

 (N/mm^2) (kN) (N/mm^2) 1) RMOS 27.5 264.02.96 2) RMOS1K 32.3 289.2 3.26 S 3) RMOS2K 35.8 267.03.00 4) RM25S 27.2 278.03.12S 5) RM25S1K 35.5 260.0 2.92 6) RM25S2K 35.8 293.5 (3.29)FS 7) RM25S5E 32.3 290.0(3.26)8) RM50S 21.3 296.8 3.33 S 9) RM50S1K 29.5 291.0 (3.27)FS 10) RM50S2K 33.0 286.0 3.21 S 11) RM50S5E 30.8 298.5 (3.35)FS 223.0 2.50 12) RM75S 24.4 13) RM75S1K 35.0 225.5 2.53 S 14) RM75S2K 2.86 34.1 255.015) RM75S5E 300.2 (3.37)FS 31.8 16) RM100S 199.22.2417.717) RM100S1K 27.9 235.52.64S 18) RM100S2K 29.5 250.5 2.81 19) RM100S5E 29.1 315.5 (3.54)FS

最大荷重

Pmax

コンクリート

強度

 σ **B**

試験体名

 $\tau_{u exp.} = \frac{Mu}{j \cdot \phi \cdot ls}$

 (N/mm^2) (1)

τ_{**u exp.** : 4.2節の式(1)による。}

付着割裂

強度

τ_{u exp.}

破壞形式

破壊形式のSは付着割裂破壊、FSは曲げ降伏後の付着割裂破壊を示す。

ここで Mu:最大曲げモーメント(N・mm) j:(7/8)d(d:梁有効せい260.5mm) φ:鉄筋周長(4-D19 240mm) *l*s:重ね継手長さ(30d_b 570mm)

図-6に各シリーズの付着割裂強度を示す。5 年間屋外暴露した梁部材(■印)の各シリーズ における付着割裂強度は置換率を 25%~ 100%に変化させた差異は認められず1年実験 時および2年実験時に比較して高い値を示す 傾向が認められた。普通細骨材(天然砂)を溶融 スラグで置換した梁部材の付着割裂強度は溶 融スラグを利用していない梁部材(RMOS シリ ーズ)の2 年実験時を上回り、置換率を75% (RM75S シリーズ)および 100%(RM100S シリー ズ)とした場合は、特に2年実験時との差が顕 著となった。このことから屋外暴露により梁部 材表面には微細な亀裂が生ずることとなった が,梁部材内部の構造体コンクリートの状態と しては健全であり,良好な付着性状が得られて いるものと考える。

5. まとめ 5 年間屋外暴露した溶融スラグ再 生コンクリート梁部材の付着性状について検 討した結果,本実験の範囲内で以下に示す知見 が得られた。

- 1)乾燥収縮率の推移は1年実験時以降5年実 験時に至るまで乾燥収縮率の増加は僅かで あり,置換率が大きい場合(100%)に乾燥収 縮率は小さい値となった。
- 2) 付着割裂強度は各置換率において屋外暴露 した5年実験時は、1年実験時および2年 実験時に比較して高い値を示す傾向が認め られた。

謝辞

本研究は日本大学生産工学研究所所管大型研究機 器構造物試験機自動計測制御システムを用いて行っ た。習志野市芝園清掃工場には溶融スラグの使用を快 諾していただいた。東京建設廃材処理協同組合 葛西 再生コンクリート工場には再生骨材を供与していた だき,混和剤メーカーF社の方々には調合に関して多

大なご協力をいただいた。ここに関係各位に記して深 謝いたします。

参考文献

-42 -

- 1)(財)日本規格協会: JIS A 5031 一般廃棄物,下水 汚泥又はそれらの焼却灰を溶融固化したコンクリ ート用溶融スラグ骨材,2010.7 改正
- 2) (財) 日本規格協会: JIS A 5022 再生骨材Mを用い たコンクリート, 2012.7 改正
- 3)高橋幸裕,師橋憲貴,桜田智之:ごみ溶融スラグと 中品質再生粗骨材を用いたRC梁部材の基礎的研 究 --その2 乾燥収縮性状-,日本大学生産工学部 第41回学術講演会,2008年12月,pp.25-28
- 4)師橋憲貴,桜田智之,三橋博巳:普通細骨材をごみ 溶融スラグで置換した再生コンクリート梁の付着 割裂強度,日本大学生産工学部第43回学術講演会, 2010年12月, pp.109-112
- 5)金子晧樹,師橋憲貴,桜田智之:材齢2年を経過した再生コンクリート梁部材の長期乾燥収縮性状,日本大学生産工学部第44回学術講演会,2011年12月, pp. 579-582