ディーゼル機関用小型二段燃焼軽油バーナの開発

日大生産工(院) ○齋藤 郁 日大生産工 野村 浩司 日野自動車(株) 津曲 一郎

1. 緒言

ディーゼル機関の連続再生式DPF(Diesel Particulate Filter)には、排出ガス温度が低い運 転条件においてもPM (Particulate Matter)を除 去するために, 高価な酸化触媒が用いられるの が一般的であり(1),後処理のコスト増大が大き な問題となっている.本研究では、後処理シス テムのコスト低減を図るため,軽油バーナを用 いて排出ガスを加熱する方法に着目した.バー ナを用いて排出ガスを加熱する方法は,過去に も横田久司ら⁽²⁾によって研究が行われてきた が,再生時の燃料使用を主因とする燃費の悪化 が問題となっており, 燃費改善が課題の一つで あることが明らかになっている. そこで, 軽油 バーナと触媒担持型DPFを組み合わせること で燃料使用を減らすシステムを採用する. 触媒 が作動可能な温度の場合は触媒のみでDPFを 再生し,市街地など排出ガス温度が低い場合は 軽油バーナで排出ガスを600 ℃以上に昇温し, DPFの触媒とバーナの燃焼でPMを処理する. この方式により,酸化触媒をなくすことができ, かつ燃費の悪化を低減できる.

本研究で製作した軽油バーナには、バーナで 発生した燃焼熱で液体燃料を蒸発させ、軽油蒸 気/空気予混合気を生成する、再生加熱蒸発方 式を採用した.液体燃料を霧化する装置が必要 ないため、低コスト化が可能となる.蒸発方式 の燃焼は噴霧拡散燃焼と比較し、火炎長を短縮 できると考えられ、燃焼器の小型化も可能にな る⁽³⁾.バーナ内部での燃焼は、供給される液体 燃料の顕熱および気化熱を賄える程度とし、余 剰の未燃燃料はバーナ出口に保炎させる二次 燃焼火炎で燃焼させる二段燃焼方式でバーナ を動作させることを試みる.将来的には、二次 空気にディーゼルエンジンの排出ガスを用い ることで、排出ガスの加熱と排出ガス中のPM の燃焼を行いたい.

本報では、実用レベルのバーナの設計に資す る基礎データの収集を目的に、実験室規模の再 生加熱蒸発方式二段燃焼バーナを製作した.定 常的な運転が可能な燃料流量範囲が広い場合 を保炎性能が高いと評価し,燃料流量および空 気流量を変化させて,保炎の可否,バーナ温度 および燃焼ガス温度・成分を調べた.

2. 実験装置および実験方法

実験装置概略を図1に示す.実験装置は主に、 バーナ本体,計測装置,制御装置から構成され る.小型軽油バーナの概略を図2に示す.小型 軽油バーナは、燃料蒸発器、燃焼室、ノズル、 二次燃焼用ノズルなどから構成される. 一段目 の燃焼が行われる燃焼室(内容積:約66 mL) で発生した熱が燃焼室壁面およびノズル壁面 を介して,燃料蒸発器に供給された空気と液体 燃料に伝達され,軽油蒸気/空気予混合気が生 成される. 生成された予混合気は燃焼室内で燃 焼し,余剰の燃料はノズル出口部の二次燃焼用 ノズルで二次空気と混合して燃焼する.二次空 気は同心円上にあけられた8個のスリットから 中心方向に供給する.二次空気の供給位置を図 3に示す.二次空気ノズル位置h_{N2}は、ノズル出 口から二次空気ノズル孔最下点までの高さ方 向距離とし、0、20および50mmと変化させた. また、周囲の空気の影響を避けるため、バーナ 上部に外筒を設置して実験を行った.計測装置 は、燃焼ガス温度測定用のR種熱電対、燃焼室 下部温度測定用のK種熱電対、および火炎観察 用のCCDビデオカメラなどから構成される.

以下に実験方法を記述する. 燃焼室下部温度 が280°Cになった時点で実験を開始した. バー ナ下部に設置した電気ヒータ(300W)でバー ナを加熱し, 燃焼室下部温度が実験開始温度に 達した後に空気および燃料を供給し, ブタン火 炎を用いて強制点火した. 10分間保炎可能で あった場合には, 二次火炎をビデオカメラで撮 影・記録した. バーナの溶損を避けるため, 実 験中に燃焼室下部温度が500°Cを超えるか, ま たは燃焼ガス温度が900°Cを超えた場合は, 実

Development of Small Light-Oil Two-Stage Burner for Diesel Engine

Iku SAITO, Hiroshi NOMURA and Ichiro TSUMAGARI

験を停止した.燃料には市販の軽油を使用し, 酸化剤にはコンプレッサからの圧縮空気を用 いた.

3. 実験結果および考察

3.1.基本バーナの保炎性能

基本バーナの保炎性能を調べた結果を図4に 示す.二次燃焼はさせずに実験を行った.縦軸 は燃料流量, 横軸は空気流量である. 10分間保 炎させた時点でバーナ下部温度が一定になっ ている場合を保炎成功と定義し、白丸で示した. 10分間の保炎は可能であるが、燃焼室下部温度 が徐々に低下している場合を黒下三角, 燃焼途 中に吹き飛びまたは消炎してしまう場合をX印, 燃料蒸発器内で燃焼が起こる場合を黒丸,バー ナの溶損を防止するために実験を停止した条 件を黒三角で示した. 燃料流量が2 mL/minの条 件では、当量比1.6以上で再生加熱不足が起こ り、それ以上の燃料流量では当量比2.2付近ま で再生加熱不足は起こらないことがわかる.燃 料流量を固定して当量比を過濃側で増大させ た場合,液体燃料の気化に必要な熱量は変化せ ずに燃焼で発生する熱量が減少するので,再生 加熱不足が生じる.燃料流量の増大により再生 加熱不足を生じる当量比が大きくなったのは, 燃焼室内で発生する燃焼熱量に対してバーナ から外部に逃げる熱量が相対的に小さくなっ たからだと推察される.また、蒸発器内部で燃 焼が起こる事例は、燃料・空気流量が大きい場 合でのみ観察されたので,原因は逆火ではなく 蒸発器内部での予混合気の自発点火であると 考えられる、燃料流量の増大に伴って単位時間 あたりに発生する燃焼熱量が増大し,バーナ温 度が上昇したことで,蒸発器内で自発点火が起 こったと推察される. 自発点火が起こりやすい 当量比1.0付近で、最も低い流量で蒸発器内の 燃焼が起こっていることもこの推察を裏付け ていると考えられる. 当量比が1.2および1.4, 燃料流量が6 mL/min付近の条件で消炎の事例 が観察されたが、現在までのところ原因は不明 である.

基本バーナの場合,当量比1.4~1.8の条件を 使用することで,燃料流量2~14 mL/minの範囲 で保炎が可能であることがわかった.また,燃 料蒸発器内での自発点火は,燃料蒸発器折り返 し部の高温・低流速域で起こると推察された.

3.2. 改良型バーナの保炎性能

蒸発器内での自発点火を防止するため,蒸発 器折返し部に低流速域が無くなるように流路 の設計変更を行った.それに伴い,機械加工の

Fig.1 Experimental apparatus.

Fig.2 Small light-oil two-stage burner.

都合上,ノズル壁が厚くなってしまったため, 燃焼ガスと未燃予混合気の熱交換は悪くなっ たと考えられる.改良型バーナの保炎性能を調 べた結果を図5に示す.蒸発器内の自発点火は 大幅に抑制され,いずれの燃料・空気流量域で も観察されなかった.再生加熱不足が起こる領 域は、当量比が低くなる方向に移動した.これ は、蒸発器内流路の変更に伴い、燃焼ガスと未 燃予混合気の熱交換が悪くなったためだと推 察される.改良型バーナの場合、当量比1.2~ 1.6の条件を使用することで、燃料流量2~22 mL/minの範囲で保炎が可能であることがわ かった.

3.3.基本バーナと改良型バーナの燃焼 室下部温度と燃焼ガス温度の比較

基本バーナと改良型バーナの燃焼室下部温 度とノズル出口燃焼ガス温度を燃料流量の関 数として図6に示す.基本バーナについては、 二次空気を供給して二段燃焼を実現した結果 も合わせて示した. 一段燃焼の当量比はいずれ も1.6, 二段燃焼の一次当量比は1.6, 総合当量 比は1.0である.一段燃焼の結果を比較すると, 燃焼ガス温度はいずれのバーナにおいてもほ ぼ同じになる結果を得た.これは、一段目の正 味燃焼熱が両バーナで同程度であることを示 している.しかしながら燃焼室下部温度は,改 良型バーナの方が低くなる結果を得た.これは, 蒸発器流路の変更に伴い,熱交換が基本バーナ の場合ほど行われていないため,温度の低い燃 料蒸気/空気混合気が燃焼室下部にまで到達 したからだと考えられる. 二段燃焼を行った場 合は, 一段燃焼と比較して燃焼室下部温度に差 はないが、燃焼ガス温度は大幅に高くなる.こ れは,一段目の燃焼で発生した燃焼ガス中の未 燃燃料蒸気が,二次空気と混合して燃焼してい るためである. 二段目の燃焼は燃焼室下部温度 に影響を及ぼさないことがわかった.

3.4.二次空気ノズル位置が保炎性能お よび燃焼ガス温度・成分に及ぼす影響

図7に燃焼ガス温度を測定した結果を示す. 縦軸は燃焼ガス温度とバーナ下部温度, 横軸は 燃料流量である. 白丸は二次空気ノズル位置0 mm, 白三角は20 mm, 白四角は50 mm, 一次 当量比は1.8,総合当量比は1.0である.燃焼ガ ス温度は、二次空気の供給位置に依存せず、ほ ぼ同じ値を示すことがわかる.燃料流量が小さ い範囲では,熱損失の影響が大きくなり燃焼ガ ス温度は大幅に下がる.保炎性能は、二次空気 ノズル位置50mmで、一段燃焼モードの場合と 同様に、最大燃料流量が14 mL/minとなるが、 20 mmでは12 mL/min, 0 mmでは10 mL/minと低 下する結果を得た. 保炎失敗の原因はいずれも 蒸発器内での自発点火だった. ノズルから二次 空気ノズルまでの距離が近い二次空気ノズル 位置0 mmと20 mmの場合,二次燃焼火炎から バーナノズルへの熱のフィードバックが増大

し、自発点火が起こる位置と推測されたノズル 壁裏側にある燃料蒸発器折り返し部の温度が 上昇したことが,蒸発器内での自発点火を誘発 したと考えられる.二次空気ノズル位置をノズ ルから50 mmほど離せば、二次燃焼火炎は第一 段の燃焼に影響を及ぼさず,一段燃焼と同等の 保炎性能を得ることが可能となる.図8に、燃 料流量8 mL/minの条件において、燃焼ガス温度、 CO濃度、およびNOx濃度を計測した結果を示 す. 燃焼ガス温度はほぼ同じであるが二次空気 ノズル位置50 mmの方がNOx濃度は低下して いる.二次空気ノズル位置50mmの方が若干燃 焼ガス温度が低いことが原因の可能性はある が, RQL (Rich-Quench-Lean) 燃焼が実現した ことにより,一次燃焼領域と二次燃焼領域の間 に消炎領域ができ,二次空気の一次燃焼領域へ の吹き込みによる一次燃焼の活発化が抑制さ れたためであるとも考えられる.また、一次空 気の高温還元状態が長く続くことで,一次燃焼

で発生した含窒素中間生成物がN₂とNOxに変換され、二次燃焼でNOxに変換される中間生成物の量が減少したためとも考えられる⁽⁴⁾. 図9 に燃料流量8 mL/min、一次当量比1.8,総合当量比0.8の条件における測定結果を示す. 図8の 総合当量比1.0の場合と比較して、二次空気ノ ズル位置0 mmの場合も50 mmの場合も、CO濃 度は大幅に減少している. このことから、二段 燃焼モードの場合、総合当量比を0.8以下に設 定する必要があると考える.

4. 結言

ディーゼル機関用小型二段燃焼軽油バーナ を製作し,燃焼実験を行った.得られた結果を 以下に示す.

- (1) 基本バーナの場合、当量比1.4~1.8の条件 を使用することで、燃料流量2~14 mL/minの範囲で保炎が可能であることが わかった。
- (2) 燃料蒸発器折り返し部の流路を改良する ことにより,燃料蒸発器内での自発点火 を抑制することができた.
- (3) 改良型バーナの燃焼ガス温度は、基本 バーナのそれとほぼ同じになるが、燃焼 室下部温度は低下する.当量比1.2~1.6の 条件を使用することで、燃料流量2~22 mL/minの範囲で保炎が可能であることが わかった.
- (4) 基本バーナを用いて二段燃焼を行った場合、二段燃焼を行わない場合と比較して 燃焼ガス温度は高くなるが、燃焼室下部 温度は変わらない。
- (5) 二次空気の供給位置は,一次当量比 1.8 および総合当量比 1.0 の場合,燃焼ガス 温度にほとんど影響を与えない.
- (6) 燃料流量 8 mL/min, 一次当量比 1.8 の条件で,総合当量比を 0.8 以下に下げることにより, CO の発生を抑制することができる.

「参考文献」

- (1) 鈴木孝 他 36 名共著, クリーンディー ゼル開発の要素技術動向, pp.129-130, 株 式会社エヌ・ティー・エス (2008)
- (2) 横田久司 他 3 名共著, DPF の大型
 ディーゼルトラックへの適用実験(1), 大
 気環境学会誌 Vol.34 No.4, pp.299-309 (1999)
- (3) 渋谷亮 他3名共著,自動車技術会学術 講演会前刷り集 No.89-14, pp.1-4 (2014)

Fig.8 Results of combustion gas analysis at $\phi_t = 1.0$.

Fig.9 Results of combustion gas analysis at $\phi_t = 0.8$.

 (4) 平井哲郎 他2名共著,高負荷旋回流燃 焼器の噴霧燃焼特性に関する研究 第2 報,日本機械学会論文集 B 編 Vol.52 No.482, pp.3388-3395 (1986)