空間重畳型64値直交振幅(64QAM)多値変調システムの研究

1. はじめに

64値振幅位相変調 (64 APSK) や64値直交 振幅変調 (64 QAM) 等の多値変調は,1シン ボル当りの情報量が多く,周波数帯域の有効 利用が可能であり,次世代衛星放送の方式 として注目されている⁽¹⁾.しかし,被変調 波の振幅変動が大きくなるため電力増幅器 (HPA) に高い線形性が要求され,線形性確 保のため出力をバックオフ (OBO) する結果, 電力増幅効率が低下する課題がある.

この問題を解決する方法として筆者等は, 多値変調波を振幅変動の小さい複数の変調 波に分割し,個別に高効率電力増幅を行い 空間上で^{ヘ、}クトル合成する空間重畳型システムを 提案している⁽²⁻¹¹⁾.

本研究では、従来方式である64 APSKと64 QAMの一括電力増幅⁽¹⁾に対して、2t⁻-ムあ るいは3t⁻-ムによる空間重畳合成型4x16=64 QAM と4x4x4=64 QAMを提案し、これらの 新方式の伝送特性 (BER)、HPA消費電力の 検討結果を報告する.

2. 多値変調通信システムの概要

2.1 通信システムの概要

Fig. 1にワイヤレス通信のシステム構成を示す.まず, ディジタル信号を変調 (Mod), その後フィルタ (Filter)で送信波形を整形し,電力増幅器 (HPA) で増幅し,受信側のフィルタで再度フィルタ リングを行い,復調 (Demod) してディジタル信 号を受信する.

日大生産工	(大学院)	ОЩП	大貴
日大生産工		田中	將義

2.2 電力増幅器の入出力特性と効率

リイヤレス通信では、送信機の最終段に位置する HPAでレヘベルを高め、アンテナから送信する (Fig.1 参照).送信機器の中でHPA消費電力の占める 割合が大きく、HPAの効率が全体の消費電力 を決定している.

Fig. 2に電力増幅器の入出力特性と電力効率 を示す. 効率は線形領域では低く, 非線形領 域に近づくにつれて高くなる. HPAに高い線 形性が要求される場合, 出力^{バックオフ}した動作 点で動作させるため、電力増幅効率が低下す る.

したがって,非線形特性による伝送特性の劣 化を抑えつつ,非線形領域で動作させること が可能となれば,高効率動作が実現する.

Fig. 2 HPA characteristics and power efficiency.

2.3 64値多値変調システムの課題

従来方式の64 APSK変調と64 QAM変調の信 号空間配置(搬送波の振幅と位相の関係)と ジステム構成をFig. 3とFig. 4に示す.

Fig. 3 Configuration of conventional 64 APSK transmitter.

Study on Spatially Superposed 64 QAM System

Daiki YAMAGUCHI and Masayoshi TANAKA

Fig. 4 Configuration of conventional 64 QAM system.

従来方式の64値多値変調システムでは,信号波は 一括電力増幅後に送信される. Fig.5 とFig.6 にそれぞれ64 APSK変調と64 QAM変調の線 形動作時(出力バックオフ OBO=9 dB)と非線形 動作時(OBO=1.5dB)の電力増幅後の信号空 間配置図を示す.電力増幅効率の良い非線形 領域で増幅すると,各信号点が大きく変動し 伝送特性が劣化することが分かる.

(b) Nonlinear operation (OBO=1.5 dB)

Fig.5 Influence of nonlinear effect on 64APSK signal constellation.

(b) Nonlinear operation (OBO=1.5 dB) Fig. 6 Influence of nonlinear effect on 64 QAM signal constellation.

3. 空間重畳型多値変調システムの提案

3.1 特徴

多値変調波を振幅変動の小さい複数波に分離した後,それぞれ個別に非線形高効率電力 増幅し,空間でベクトル合成することにより,周 波数の有効利用と消費電力の低減を同時に実 現することが可能となる.

3.2 原理

4x16=64 QAM システムの原理を Fig. 7 に示す. 振幅変動の小さな QPSK 波と 16 QAM 波を空間で重畳合成し, 4x16=64 QAM を形成する. QPSK 波と 16 QAM をそれぞれ個別に HPA の 飽和領域近傍で高効率電力増幅後, 別々のアンテ †で送信し, 空間上で 2 波をベクトル合成する.

Fig. 7 Principle of superposed 4x16=64 QAM system.

一方,4x4x4=64 QAM システムの原理を Fig.8 に 示す.振幅変動の小さな QPSK 波 3 波を 3 ビー ムで空間で重畳合成し,4x4x4=64 QAM を形成 する.3 つの QPSK 波をそれぞれ個別に HPA の飽和領域近傍で高効率電力増幅後,別々の アンテナで送信し,空間上で3 波をベクトル合成する.

system.

4. 空間重畳方式の性能評価

4.1 PAPR特性

本検討で利用した各変調方式の振幅分布を Fig. 9に示す. 整形フィルタのRoll off=0.35 時の特 性であり,変調方法により振幅変動が異なる ことが分かる. この振幅変動を定量的に評価 するためにPAPR (ピーク値/RMS値) 値を使用し た. この結果をTable 1に示す.

Fig. 9 Level histogram of 64 APSK, 64 QAM, 16 APSK, and QPSK.

Table 1	Comparison	of PAPR
---------	------------	---------

Modulation	PAPR (dB)		
64APSK	6.1		
64QAM	7.39		
QPSK	3.5		
16QAM	5.46		

4.2 BER特性

空間重畳型64値変調方式と従来方式のBER (ビット誤り率)特性を比較したものをFig. 10 に示す.従来方式型の64 APSKではHPAの動作 点を出力バックオ7OBO=5.2 dB,従来方式型の64 QAMではOBO=5.0 dBに設定した. 2ビーム合成 による空間重畳型の4x16=64 QAMではHPA-1 をOBO=1.6 dB, HPA-2をOBO=2.5 dB, 3ビーム 合成による空間重畳型の4x4x4=64 QAMでは3 つのHPAをOBO=1.6 dBに設定している.

Fig. 11に各HPAの入出力特性上の動作点を 示す.4x16=64 QAMと4x4x4=64 QAMともに従 来型64APSK, 64QAMと大きな差のないBER特 性であり、ほぼ同一であることから、空間重 畳型システムでは従来方式よりもHPAのOBOを小 さくでき、高効率動作が実現できることを示 している.

4.3 HPA消費電力比較

上記の検討で,空間重畳型システムは HPA の高 効率動作である非線形領域での増幅が可能で あることが分かった.これによる低消費電力 化の効果を評価した. **HPA** の消費電力 Pdc は以下の式で与えられる.

$$P_{dc} = \frac{P_{out}}{\eta} \tag{1}$$

ここで Pout は出力, η は電力効率である.

同一 BER 時の従来方式型の 64 APSK, 64 QAM と 2 ビーム空間重畳型の 4x16=64 QAM, 3 ビーム空間重畳型の 4x4x4=64 QAM の消費電力 比較を Table 2 に示す. Fig. 10 で BER 特性が 一致した時の各 OBO 点において,従来方式の 64 QAM の消費電力を 1 として表示している. 2 ビーム空間重畳型 4x16=64 QAM の消費電力 は 0.60 倍であり, 3 ビーム空間重畳型 4x4x4=64

OAM 波の消費電力は 0.59 倍と低消費電力化

を実現している.

Fig. 10 BER performance of 64 APSK, 64 QAM, 4x16 QAM, and 4x4x4 QAM systems.

QAM, and 4x4x4 QAM systems.

Table 2 Comparison of HPA power consumptionwhen the same BER is obtained.

Modulation	No. of beams	Input signals	HPA	OBO(dB)	Pdc(Relative)
64APSK	1	64APSK	HPA	5.2	0.94
64QAM	1	64QAM	HPA	5.0	1.00
4×16 OAM	2	QPSK	HPA-1	1.6	0.60
4X10 QAM	2	16QAM	HPA-2	2.5	0.00
4x4x4 QAM	3	QPSK	HPA-1	1.6	0.50
		QPSK	HPA-2 HPA-3	1.6	0.59

5. 本提案方式の適用例

以上の検討結果から,空間重畳型システムが適用 可能な衛星通信システムを検討した.

5.1 Bent-pipe 方式を用いた衛星放送

衛星内で地上の送信基地局から送信された 上りの信号を受信し、周波数変換、増幅後に下 り信号として送信する Bent-pipe 型の衛星システム において、上りの Uplink に空間重畳型システム、 下りの Downlink に従来方式の一括増幅型を適 用した例を Fig. 12 に示す.本方式では、Table 2 に示す消費電力の比較より、Uplink において 従来方式より消費電力の 40%低減が可能であ る. Downlink においては、従来方式の 64QAM を用いる.よって、本提案方式を Bent-pipe 型 の衛星システムに用いた場合、従来方式に比べて Uplink で消費電力の 40%低減が可能である.

5.2 再生中継方式を用いた衛星放送

地上の送信基地局から送信された信号を受 信後,衛星内で一度ディジタル信号に復調する再 生中継の衛星システムにおいては,上りのUplink と下りのDownlink回線の両方に空間重畳型ンス テムを適用することが可能となる,この構成図 をFig. 13に示す.本方式では,Table 2の消費電 力の比較より Uplinkにおいて,従来方式より 消費電力の40%低減が可能であり,さらに Downlinkにおいても従来方式より40%の消費 電力低減が可能である.よって本提案方式を 再生中継システムに用いた場合,従来方式と比べ て全体で40%の消費電力低減が可能である.

6. まとめ

帯域幅を有効に利用して高速大容量伝送が 可能な衛星通信方式として64 APSKや64 QAMが検討されている.しかし,多値変調波 を一括増幅するために送信時の電力効率が低 下する課題がある.この問題を解決するため に,空間上で2波又は3波の振幅変動の小さい 変調波を重畳合成する空間重畳型システムを提案 した.

従来方式型の 64 APSK 波や 64 QAM 波に対 して,2 ビーム空間重畳型 4x16=64 QAM 波と 3 ビーム空間重畳型 4x4x4=64 QAM 波の伝送特 性(BER 特性)と HPA 消費電力を比較検討した.

その結果,従来方式の 64APSK 波,64QAM 波 に比べて,2ビーム空間重畳型と3ビーム空間重畳 型では共に 40%の消費電力削減を実現できる ことを明らかにした. さらに空間重畳型システム は,Bent-pipe 方式,再生中継方式の両方に適 用可能であり,いずれも低消費電力化が可能 となることを示した.

Fig. 12 Proposed system for bent-pipe satellite communications.

Regenerative transponder

Fig. 13 Proposed system for regenerative satellite communications.

謝辞

本研究は<u>JSPS科研費24560480</u>の助成を受けた ものです.

参考文献

(1) ETSI, Digital Video Broadcasting (DVB), ETSI EN 302 307 v1.2.1(2009-08) (2) M. Tanaka, H. Madate, AIAA, ICSSC-2010-8681, 2010, August. 2010 (3)間舘,田中,信学技報,SAT2010-85,2011-2, (4) M. Tanaka, H. Madate, AIAA, ICSSC2011, AIAA-2011-8026, Nov. 2011 (5) M. Tanaka, T. Watanabe, & M. Tobinai, AIAA ICSSC2012, 6-1, Sept. 2012 (6)大窪,田中,信学通)大,B-3-13,2013, (7)野口,田中,信学通>大,B-3-30,2013, (8) M. Tanaka, T. Ohkubo. AIAA, ICSSC2013, AIAA2013-5677, Oct. 2013 (9)大窪,田中, 信学総全大, B-3-19, 2014 (10)大窪,田中,信学会ソサイエティ大,B-3-14,2014 (11)山口,田中,信学会ソサイエティ大,B-3-9,2014