電磁界解析に基づく渦電流探傷のプローブを用いたきず長さ評価に関する研究

1.はじめに

発電プラントなどの腐食環境下におかれた構造物では、応力が加わることで応力腐食割れ(以降、SCC)が発生する。また、熱循環が繰り返し発生する箇所では、熱膨張と熱収縮によって熱疲労割れ(以降、TFC)が発生する事例が報告されている。そのため、非破壊検査法によるきずの検出と評価方法の検討が行われている¹⁾²⁾。

これまでに、SCC 及び TFC に対して、雑音 が小さく、S/N 高くきず検出が可能なΘプロ ーブを適用した渦電流探傷試験を行い、明瞭 なきず検出が可能であること、また、きずの 長さが励磁コイルの外径以上であれば、きず 信号振幅波形の最初と最後のピーク間距離

(以降、PPL)によってきずの長さ評価が可能 であるという報告を行った³⁾。しかし、渦電 流は磁気的な性質から広がりを持つため、き ず信号のピークはきずの端部付近で発生する。 そのため、PPLによって評価したきず長さ(以 降、EFL) は実際のきずの長さ(以降、TFL)よ りも長めに評価される。そこで、渦電流の広 がりに起因する TFL と PPL との差を補正する ことで、精度高いきずの長さ評価が可能にな ると考えた。しかし、PPL からどの程度の長 さを補正すればよいかが不明確である。本研 究では、励磁コイルの外径よりも長いきずを 施した解析モデルを作成し、きずの長さ、深 さ及び形状を種々変化させて三次元電磁界解 析を行い、TFL と PPL との差から補正値を明 確にした。次に、探傷試験によって得られた 信号振幅波形の PPL に対して補正値を適用す

日大生産工	(院)	○本宮	寛憲
日大生産工		小山	潔

ることで、SCC 及び TFC に対してきずの長さ評価を行った。

2. Θプローブの構造と探傷原理

図1に本研究で用いたΘプローブの構造を示 す。Θプローブは、円形横置きの励磁コイルと 矩形縦置きの検出コイルによって構成され、プ ローブと試験体のリフトオフが変化しても試 験体に誘導される渦電流分布が変化しない限 り、リフトオフ雑音が発生しないため、S/N高 くきず検出を行うことができる。励磁コイルは コイルの巻線方向に同心円状の渦電流を誘導

Study on estimation flaw length using eddy current flaw detection Θ probe based on electromagnetic field analysis Tomonori HONGU and Kiyoshi KOYAMA し、検出コイルはコイルの巻線方向に流れる渦 電流によって発生する磁束の変化をきず信号 として検出する。

図2に Θ プローブの探傷原理を示す。きず の長さを評価するために、検出コイルをきず の長さ方向に対して垂直方向に配置して走査 する。図(a)のようにプローブがきずの端部に 近づくと、渦電流がきずを避けて流れるため、 検出コイルの巻線方向と同方向に渦電流が流 れ、それが発生させる磁束による起電力の変 化をきず信号として検出する。図(b)のように プローブがきずの中心に移動すると、図(a) と同様に渦電流がきずを避けて流れるが、渦 電流の分布は左右対象となり、発生する磁束 の総和は 0 となるためきず信号が発生しない。

3. 解析方法及び解析モデル

有限要素法による三次元電磁界解析を行った。 解析モデルとして、試験体、検出コイル及び励 磁コイルの三つのモデルを作成し、練成解析を 行った。図3に試験体のモデルを示す。寸法は 縦 160mm、横 160mm、厚さを 12mm とし、導電率 を1×10⁷S/m、比透磁率を1とした。また、試験 体モデルの中心部にきずモデルを作成した。図4 にきずモデルを示す。形状は矩形型、お椀型、 楔型とした。表1にきずモデルの寸法を示す。 矩形型を24種、お椀型及び楔型を2種ずつの計 28 種作成し、長さ方向が Y 軸方向となるように 作成した。図5に0プローブの解析モデルを示 す。励磁コイルは円形横置きで外径 9mm、内径 7mm、巻線断面積 1mm²、電流密度を 1.3×10⁷ A/m ²とし、XY 平面に対して平行となるように作成し た。検出コイルは矩形縦置きで縦7mm、横6.8mm、 巻線断面積を 1mm²とし、コイルの巻線方向が X 軸方向になるように作成した。解析条件はリフ トオフを 0.5mm、試験周波数を 100kHz とし、励 磁コイル及び検出コイルの中心がをきずの中心 からY軸方向に-20mmの位置に配置し、Y軸方向 に+40mmの範囲を 0.1mm 間隔で解析を行った。

(c)楔型 図4きずモデル

表1きずモデルの寸法_____

	umulm				
type	length	depth	width		
rectangle	10,15,25	1.0	0.5		
		2.0			
		3.0			
		4.0			
		5.0			
		6.0			
		7.0			
		8.0			
bowl	15	5.0			
	25	8.0			
wedge	15	5.0			
	$\overline{25}$	8.0			

図5 0プローブモデル

4. 実験結果

4.1. 補正値の検討

補正値を求めるために、きずの長さ、深さ及 び形状を種々変化させ、TFL と PPL との差への影 響の検討を行った。

図6にきず形状が矩形型で、きずの深さが8mm、 きずの長さが15mm と25mm の場合のきず信号振 幅波形を示す。TFL と PPL との差はきずの長さが 15mm の場合には2.4mm、長さが25mm の場合には +2.4mm であり、きずの長さが異なる場合でも、 差は変わらないことがわかった。

図7にきず形状が矩形型で、きずの長さが25mm、 きずの深さが 1mm と 8mm の場合の信号振幅波形 を示す。TFL と PPL との差は、深さが 8mm の場合 には+2.4mm、深さが 1mm の場合には+3.4mm であ り、きず浅くなると差が僅かに長くなることが 分かった。

図8にきず形状が異なり、きずの長さが25mm、 最大きず深さが8mmの場合の信号振幅波形を示 す。TFLとPPLとの差は矩形型が+2.4mm、お椀型 が2.3mm、楔型が1.8mmであり、きずの形状によ って差が僅かに変化することがわかった。

以上のことから、きずの深さ及び形状が異な る場合、TFL と PPL との差は僅かに変化するが、 その影響は小さいことがわかった。そこで、作 成した全きずモデルの TFL と PPL との差の平均 値を求めると PPL は TFL よりも平均して約 +2.7mm 程度長いことが分かったため、探傷試験 によって得られる信号振幅波形の最初と最後の PPL から-2.7mm 補正すればよいと考えた。 4.2.EDM、SCC 及び TFC のきず長さ評価

探傷試験に用いた試験体に施したきずの寸法 を表2に示す。図9にEDMの実際のきず長さに 対する評価したきず長さを示す。探傷試験によ って得られた信号振幅波形の最初と最後のPPL から-2.7mm 補正する方法で評価したきず長さは、 実際のきず長さに対して±5%の範囲で評価され る事が分かった。

図 10 に SCC 及び TFC の実際のきず長さに対す

図8 きずの形状が異なる場合の信号振幅波形

る評価したきず長さを示す。SCC や TFC のような 内部が複雑なきずに対しても、実際のきず長さ に対しても±5%の範囲で評価される事が分かっ た。なお、探傷試験に用いた SCC 及び TFC を施 した試験体は日本保全学会の回送試験体である。 5.まとめ

本研究では、励磁コイルの外径以上の長さの きずを対象として、長さ、深さ及び形状を種々 変化させて三次元電磁界解析を行った結果、TFL と PPL との差はきずの長さの影響を受けず、深 さ及び形状の影響もほとんど受けないことがわ かった。そこで、差の平均値から補正値を求め、 探傷試験によって得られた信号振幅波形の最初 と最後の PPL に補正値を適用することで SCC 及 び TFC のきずの長さ評価を行った。これまでに 報告した最初と最後の PPL できずの長さを評価 した場合、TFL に対して±25%の範囲で評価され たが、今回の方法で評価した場合、TFL に対して ±5%の範囲できずの長さを評価する事ができた。 今後、きずの長さ評価の更なる検討として、励 磁コイルの外径を小さくすることでプローブの 分解能を上げて同様の検討を行う予定である。

表2 きず形状の寸法

		un	10[11111]
flaw type	length	depth	width
rectangle1	25.0	1.0	0.4
rectangle2	25.0	2.0	0.4
rectangle3	25.0	4.0	0.4
rectangle4	25.0	8.0	0.4
rectangle5	10.0	4.0	0.4
rectangle6	15.0	4.0	0.4
rectangle7	25.0	1.0	0.1
rectangle8	25.0	1.0	0.2
bowl1	25.0	8.0	0.4
bowl2	15.0	5.0	0.2
wedge1	25.0	8.0	0.4
wedge2	15.0	5.0	0.2
SCC1	26.0	5.18	
SCC2	28.0	4.79	
SCC3	14.0	4.90	\frown
SCC4	24.0	5.27	\sim
SCC5	17.0	5.17	\sim
SCC6	18.0	1.58	
SCC7	21.0	6.05	
SCC8	19.0	4.24	\sim
SCC9	15.0	3.93	
TFC1	14.4	4.1	
TFC2	20.1	6.5	
TFC3	22.1	6.5	
TFC4	11.7	4.1	

図 10 SCC 及び TFC の TFL に対する EFL

参考文献

• **4 Г**

- Noritaka Yusa, Stephane Perrin, Kazue Mizuno, Kenzo Miya: Numerical modeling of general cracks from the viewpoint of eddy current simulations, NDT&E international 40, pp577-583(2007)
- 2) 福岡克弘、橋本光男:マルチ化した一様渦電 流プローブによる自然亀裂の探傷評価、電気 学会論文集A126巻12号、pp1255-1261 (2006)
- 3)本宮寛憲、小山潔:渦電流探傷試験による応 力腐食割れ・熱疲労割れの検出と評価に関す る研究、第17回表面探傷シンポジウム講演 論文集、表面探傷技術による健全性診断、 pp23-26(2014)