有機繊維補強コンクリート型枠を用いた再生コンクリート梁部材の基礎的研究 ―その2 1 年経過時の付着性状―

1. はじめに 昨年度の学術講演会では有機 繊維補強コンクリート型枠(以下、有機繊維補 強型枠)を用いた再生コンクリート梁部材の 材齢5週時の付着性状1)について報告した。 その結果、有機繊維補強型枠を用いた再生コ ンクリート梁部材は一体打ちの再生コンクリ ート梁部材と比較して初期剛性が上昇した。 また、付着割裂強度についても上昇する傾向 が見られた。しかし、再生骨材を使用したコ ンクリートの特徴である乾燥収縮性状につい ては検討を行っていない。乾燥収縮性状は、 鉄筋コンクリート部材の耐久性を考慮する上 で重要な要因となる。そこで本報は有機繊維 補強型枠を用いた再生コンクリート梁部材の 乾燥収縮性状を報告するとともに、材齢の違 いおよび型枠の使用の有無が付着性状へ与え る影響について検討を行った。

2. 実験概要

2.1 試験体詳細 表-1 に試験体詳細を示す。 ハーフ PCa 試験体は後打ち再生コンクリート に、普通粗骨材(吸水率:0.80%)を再生粗骨材 (吸水率:4.52%)で50%置換した FMOPCa シリ ーズ、さらに普通細骨材(吸水率:2.65%)を再 生細骨材(吸水率:11.70%)で 50%置換した FMMOPCa シリーズの2シリーズとした。また、 同一骨材置換率の一体打ち試験体 HFM シリー ズ、HFMM シリーズ²⁾との比較を行う。

2.2 調合条件 表-2 に調合表を示す。本研究 で用いた後打ち再生コンクリートは、呼び強 度 60N/mm²を目標とし、試し練りの結果を基

日大生産工(院)	○浪花	翔馬
日大生産工	師橋	憲貴

表-1 試験体詳細

試験体名	シリーズ 骨材置換率	試験体 タイプ	載荷時期
1)FMOPCa	FMOPCaシリーズ 再仕知母は(50%)		材齢5週時
2)FMOPCaK	再生細骨材(50%)	ハーフPCa	材齢1年時
3)FMMOPCa	FMMOPCaシリーズ 再仕知母は(50%)	試験体	材齢5週時
4) FMMOPCaK	再生細骨材(50%)		材齢1年時
5)HFM	HFMシリーズ 再生粗骨は(50%)		材齢5週時
6)HFM1K	再生粗骨材(50%) 再生細骨材(0%)	一体打ち 試験体	材齢1年時
7)HFMM	HFMMシリーズ 再生相母は(509/)		材齢5週時
8)HFMM1K	再生細骨材(50%)		材齢1年時

骨材置換率:普通骨材を再生骨材で置換する割合 K:1年保存後の試験体

表−2 調合表

			単位質量(kg/m ³)					
2.11 m		W/C			粗骨材		細骨材	
	シリース	(%)	W	С	再生	普通	再生	普通
			粗骨材	粗骨材	細骨材	細骨材		
	FMOPCa	31.3	170	543	420	456	0	717
	FMMOPCa	33.8	170	503	420	456	322	375
	HFM	40.0	170	425	410	456	0	820
	HFMM	40.0	170	425	410	456	361	410

表-3 フレッシュ性状

シリーズ	スランプフロー	空気量	高性能AE 減水剤	AE剤
	$(cm \times cm)$	(%)	(C/%)	(%)
FMOPCa	56.8 \times 57.9	5.7	1.66	0.008
FMMOPCa	50.7 \times 50.9	3.4	1.66	0.008
HFM	58. 0×55.0	5.2	1.55	0.004
HFMM	57. 0×59.0	3.2	1.80	0.007

<u> </u>		
20-4	· / 二 / + 1 - - - - - -	
1		

	圧縮強度	割裂強度	
シリーズ	$^{\rm O}$ B Shell	σ T Shell	載荷時期
	(N/mm ²)	(N/mm ²)	
FMOPCa,	146.2	10.4	材齢5週時
FMMOPCa	159.7	11.7	材齢1年時

に調合を決定した。また、混和剤についても 試し練りにより添加量を決定した。

Fundamental Study on the Recycled Aggregate Concrete beams
with Organic Fiber Reinforced Concrete Form
-Part.2 Bond Properties of 1 year Experiment-

Shoma NANIWA and Noritaka MOROHASHI

2.3 フレッシュ性状 表-3 にフレッシュ性 状を示す。本研究では有機繊維補強型枠と主 筋のあき間隔を考慮し、自己充填性が高く、 優れた材料分離抵抗性を有する高流動再生コ ンクリートを後打ちした。また、全試験体と も JASS 5³⁾を参考に、目標スランプフロー値 を 60±5cm とした。再生細骨材を置換した FMMOPCa シリーズは目標フロー値を下回り、 再生細骨材の品質がフロー値の低下に影響し たものと考える。FMMOPCa シリーズは良好な フレッシュ性状を得ることはできなかったが、 打ち込みに必要な流動性を得られたため打設 を行った。

2.4 試験体形状 表-4 に有機繊維補強型枠 の力学特性を示す。後打ち再生コンクリート の材齢とは異なるが、梁部材の付着割裂実験 を行った5週実験時と1年経過実験時に円柱 供試体を用いて強度試験を行った。有機繊維 補強型枠の使用材料は、プレミックス、水、 ポリカルボン酸系の高性能減水剤、有機繊維 である。有機繊維は直径 0.2mm、長さ 15mm の ものを体積比で 1.5%使用した。また、図-1 に試験体断面、図-2に有機繊維補強型枠の付 着層を、図-3に試験体形状を示す。有機繊維 補強型枠は梁断面に対して側面、底面ともに 厚さが18mm、付着層には直径10mm、深さ3.6mm の付着層凹部が設けられている。また、後打 ち再生コンクリートを含めた鉄筋からのかぶ り厚さを30mmとした。試験体は純曲げ区間の 下端に重ね継手を設けた単純梁形式とし、サ イドスプリット型の付着割裂破壊を想定し、 重ね継手長さは570mmとした。また、加力は 2点集中加力で正負繰返し載荷とした。

3. 乾燥収縮ひび割れ性状 図-4 に梁部材の 打設面における1年経過時の乾燥収縮ひび割 れを示す。有機繊維補強型枠を使用した試験 体 a) 図 FMOPCaK、c) 図 FMMOPCaK は一体打ち試 験体である b) 図 HFM1K、d) 図 HFM1K と比較し

て、乾燥収縮ひび割れの本数の減少が見られ た。再生細骨材の使用の有無について着目し 比較を行うと、再生細骨材を置換した試験体 の方が乾燥収縮ひび割れの本数が多いと認め られる。また、有機繊維補強型枠と後打ち再 生コンクリートに肌別れのようなひび割れは 発生せず、材齢1年時においても一体化が確 認できた。底面および側面は有機繊維補強型 枠によって覆われているため、乾燥収縮ひび 割れの発生は見られず、型枠そのものについ ても乾燥収縮ひび割れは発生しなかった。

4. 実験結果

4.1 最終破壊形状 表-5 に実験結果一覧を、 図−5に1年経過実験における各試験体の最終 破壊形状を示す。梁の上端に示した点線によ るひび割れは負載荷時の曲げひび割れである。 ハーフ PCa 試験体である a) 図 FMOPCaK、c) 図 FMMOPCaK は重ね継手端部付近の曲げひび割 れから上端方向に太いひび割れが見られた。 これは試験体内部で、サイドスプリット型の 付着割裂破壊が起きたが有機繊維補強型枠に 配合した有機繊維材の効果により、梁側面の 主筋線上に発生するひび割れが抑制されたも のと推察する。また、最終破壊後に後打ち再 生コンクリートと有機繊維補強型枠の境界面 で破壊が見られなかったことから、一体化さ れていることが認められた。一方、一体打ち 試験体である b) 図 HFM1K、d) 図 HFMM1K は終局 時に主筋線上に沿って太いひび割れが進行し 破壊する、サイドスプリット型の付着割裂破 壊を起こした。

4.2 主筋長期許容応力度時の曲げひび割れ

図-6 に主筋長期許容応力度時の最大曲げ ひび割れ幅 Wmax を示す。有機繊維補強型枠を 用いたハーフ PCa 試験体は、一体打ち試験体 と比較して Wmax が平均約 0.06mm 小さくなっ た。これより、ハーフ PCa 試験体は、有機繊 維補強型枠に配合された有機繊維材に曲げひ び割れ幅を抑制する効果があり、曲げひび割 れ幅の抑制に有効であると考える。また、全 ての試験体の Wmax は RC 規準⁴⁾のひび割れ制 限目標値の 0.25mm 以下となった。

4.3 変位性状 図-7 に再生粗骨材を 50%置 換した試験体の荷重-変位曲線(包絡線)を示

表-5 実験結果一覧

試験体名	圧縮強度	最大荷重	付着割裂 強度	最大曲げ ひび割れ幅	
	(N/mm^2)	(kN)	(N/mm^2)	(mm)	
1)FMOPCa	67.3	441.5	4.96	0.06	
2)FMOPCaK	71.3	447.0	5.02	0.10	
3) FMMOPCa	60.6	397.5	4.46	0.06	
4) FMMOPCaK	66.5	450.0	5.05	0.06	
5)HFM	50.4	344.0	3.86	0.10	
6)HFM1K	61.1	350.5	3.93	0.20	
7)HFMM	56.6	375.0	4.21	0.11	
8)HFMM1K	67.4	375.0	4.21	0.12	

最大曲げひび割れ幅: $\sigma_t = 200 N/mm^2$

最大曲げひび割れ幅

す。実験時の荷重制御は主筋の応力度が σ_t =100(N/mm²)ずつ増加するよう行った。ま た、変位は中央変位 δ を示した。有機繊維補 強型枠を用いたハーフ PCa 試験体は同一骨材 置換率の一体打ち試験体と比較して初期剛性 が上昇し、最大荷重も上昇した。また、各シ リーズで材齢の違いによる付着割裂強度の差 はそれほど見られなかった。有機繊維補強型 枠の圧縮強度(σ_B shell)は 5 週実験時に 146.2(N/mm²)、1 年実験時に 159.7(N/mm²)と 後打ち再生コンクリートに比べ、高強度にな っている。高強度である有機繊維補強型枠が 引張側となる底面部で、引張応力を負担した ことが初期剛性および最大荷重の上昇につな がったと考える。

4.4 付着割裂強度の検討 付着割裂強度は 式(1)により求めた。

式(1) 付着割裂強度算定式

<i>τ</i>		$(\mathbf{N} / 2)$	(1)
ι u exp. — j• 4	, • ls	(N/mm^2)	(1)
ここで、M _u :	最大曲け	モーメント	(N•mm)
j :	(7/8) d(a)	d:梁有効も	とい 260.5mm)
ϕ :	鉄筋周長	€(4-D19 24	Omm)
ℓs :	重ね継手	≦長さ(30db	570mm)

図-8 に付着割裂強度を示す。有機繊維補強 型枠を用いたハーフ PCa 試験体の付着割裂強 度は、一体打ち試験体と比較して上昇した。 これは有機繊維補強型枠を用いたことで梁部 材の平均的なコンクリート強度が上昇し、付 着割裂強度が高くなったと考える。また、材 齢5週時と材齢1年時、再生細骨材の使用の 有無の比較において差異はさほど見られなか った。材齢5週時と材齢1年時の付着割裂強 度に大きな差が見られなかったことから、梁 部材の乾燥収縮ひび割れの影響は少なかった と考える。以上より、ハーフ PCa として用い た有機繊維補強型枠の力学特性が、外殻部の 型枠としての役割のみならず構造材として部 材耐力を分担していると考える。

5. まとめ 有機繊維補強コンクリート型枠 を用いた再生コンクリート梁部材の基礎的研 究として、1 年経過時の付着性状を検討した 結果、以下の知見が得られた。

- 1)有機繊維補強型枠をハーフPCa梁部材に 用いることで、一体打ちの再生コンクリ ート梁部材と比較して、初期剛性および 付着割裂強度が上昇した。
- 2)有機繊維補強型枠を用いたハーフ PCa 試験体は、骨材置換率が同一の一体打 ち試験体と比較して、打設面での乾燥 収縮ひび割れの減少が認められた。
- 3) ハーフ PCa 試験体、一体打ち試験体と もに乾燥収縮ひび割れが付着性状へ与 える影響は少ないことが分かった。

謝辞 本研究を遂行するにあたり、葛西再生コンク リート工場には再生コンクリートの手配で御協力を いただきました。混和剤メーカーF社の方々には調合 計画において貴重な御助言をいただきました。ここ に記して深謝いたします。

参考文献

- 1) 浪花翔馬, 師橋憲貴, 桜田智之:日本大学生産工学 部第46回学術講演会講演概要, pp. 631-634, 2013年12月7日
- 2)師橋憲貴,桜田智之,三橋博巳:高流動再生コンク リートを適用した梁部材の付着特性に関する実験 的研究,構造工学論文集, Vol. 58B, pp. 1~8, 2012年3月
- 日本建築学会:建築工事標準仕様書・同解説 JASS 5 鉄筋コンクリート工事,2009 年
- 4)日本建築学会:鉄筋コンクリート構造計算規準・同 解説,2010 年