3003 アルミニウム合金と ABS 樹脂の重ね摩擦攪拌接合

日大生産工(院) 〇小澤 崇将 日大生産工 加藤 数良 日大生産工 前田 将克 日大生産工 野本 光輝

1. 緒 言

近年,構造物の軽量化へ向けた材料選択の流れ に乗って,鉄鋼材料から軽金属材料へ,さらに樹 脂材料への転換が活発となっている.軽金属材料 の中でもアルミニウム合金は種々な特性に優れ, 各分野で広く用いられている.このアルミニウム 合金と樹脂材料を組合せたハイブリッド構造が 可能となれば軽量化への効果は大きい¹⁰.

しかし、そのようなハイブリッド構造を構築 するためには接合は必要不可欠であり、今後の 大きな課題でもあり、金属と樹脂を重ね、金属 側の重ね面にレーザーを照射し、樹脂を溶融さ せ接合するレーザー接合法²⁾等、研究報告は増 加傾向にある.しかし、樹脂と金属の組合せに 制限があることや、前処理による生産時間の延 長、高額な設備投資等、多くの課題がある.そ こで本研究では摩擦撹拌接合(Friction stir welding: FSW)による検討を行った.FSWが可 能であれば直接接合であるので生産時間の短 縮につながる.

著者らは先に3003アルミニウム合金とアクリ ル樹脂の重ね摩擦撹拌接合を行った結果,アン カー効果を呈した接合を達成し,その引張せん 断荷重は最高値で986 Nと,接着剤継手に比較し 4倍以上の強度を得た³⁾.しかし,アクリル樹脂 は耐クラック性に劣るため,接合部を起点に破 断した.そこで,アクリル樹脂に比較して耐ク ラック性に優れ,延性に富むポリカーボネート 樹脂を用いたところ,引張せん断荷重の最高値 は1275 Nを示し,接着剤継手の約6倍となった⁴⁾. これらの結果より,樹脂の機械的性質が継手強 度に強い影響を及ぼすことが理解される.一方 で,樹脂材料が有するその他の性質が継手強度 に及ぼす影響は未だに解明されていない.

本研究では、樹脂材料の高温流動性に着目した.すなわち、ポリカーボネート樹脂より若干 機械的性質に劣るが、流動性に優れるABS樹脂 を用いて3003アルミニウム合金との摩擦撹拌 接合による重ね接合の可能性を検討した.

2. 供試材および実験方法

供試材には市販の 3003-H24 アルミニウム 合金板(以後,A3003, 100¹×50^{*}×3^t, σ_{B} =145 MPa, δ = 25 %, 56.4 HV0.05) と ABS 樹脂(以 後,ABS, 100¹×50^{*}×5^t, σ_{B} = 39.7 MPa, δ = 6.4 %, 11.4 HV0.05)を用い,酸化膜の除去等 の特別な前処理は行わないで実験に供した.

接合には全自動摩擦攪拌接合機を使用し, 予備実験により選定した Table 1 に示す条件 を組合せ、重ね幅 40 mm の重ね接合とした. 板の配置は上側に A3003, 下側を ABS とした. 回転工具は Fig. 1 に示す形状の合金工具鋼 (SKD61) 製とした. 一般的に FSW に用いられる プローブ形状では十分な強度が得られなかっ たので,回転工具にはメインプローブの先端 にアクリルをわずかに撹拌させるための突起 (以後,サブプローブと称す)を設けた.回転工 具は横方向から挿入し、ショルダーと A3003 表面との間には0.1 mmの隙間を設けた.得ら れた重ね FSW 継手の外観観察, 巨視的組織観 察、引張せん断試験、接合時の温度測定をい ずれも室温で行った.引張せん断試験片は接 合部を試験片平行部中央とし, 接合方向に垂 直に幅20 mmの試験片を採取した.

Table 1 Friction stir welding conditions.

Fig. 1 Shape and dimensions of tool.

Lap Friction Stir Welding of ABS Resin to 3003 Aluminum Alloy

Takamasa OZAWA, Kazuyoshi KATOH, Masakatsu MAEDA and Mitsuteru NOMOTO

3. 実験結果および考察

継手中央部の横断面巨視的組織をFig.2に示 す.全条件で、A3003の底部にツールの移動に 伴った変形により裂け目が生じ、その変形によ って生じた空間にABSの流動が観察された.こ の空間はAS側が大きく、接合速度が高くなる のに伴いさらに大きくなった.空間内部への ABSの流動量は接合速度が低い程多くなり、AS 側の空間内部に流動したABSはA3003と混合し 黒色を呈した.また、図中の長方形で囲んだ領 域でツールと材料間で発生した摩擦熱がA3003 を通してABS表面を熱変形させ密着した範囲が 観察された.この範囲は接合速度が高くなると 入熱量の減少により狭くなった.

引張せん断試験結果をFig.3に示す. 横軸はツ ールが1回転する間に移動する距離(回転ピッ チ)とした.工具回転数1100, 1400 rpm, 回転 ピッチ0.8~0.9 mm/rev付近で高い引張せん断 荷重を示した. この範囲は回転ピッチの小さい 条件, すなわち, 入熱量の多い条件であり, ABS の流動が容易となったため,高い引張せん断荷重 を示したものと考える.引張せん断荷重の最高値 は、工具回転数1100 rpm、接合速度14 mm/sの条 件で834Nが得られた.これは接着剤継手の引張 せん断荷重245 Nの3倍を超える値であった.引 張せん断荷重は最大値を示した条件より後、回 転ピッチが大きくなると減少した. これは巨視 的組織で示したAS側の空間が大きくなり、A3003 の強度低下につながったことに起因する. この ことは工具回転数800 rpmの条件においても同 様である.破断後の引張せん断試験片を幅方向 から撮影した外観をFig. 4に示す. 工具回転数 800 rpmの回転ピッチの小さい条件では引張せ ん断荷重が顕著に低下した.このことは, Fig.4 (a)に示すように、A3003底部に部分的に裂け目 が生じず, ABSの流動を妨げる状態であったこと が原因と推察する. 高い引張せん断荷重を示し た条件ではFig. 4 (b)のように, A3003内部に流動 したABSの根元からせん断破断した.

参考文献

- 1) 例えば、伊神英逸:高分子、27-11(1978)、 785-791.
- 2) 例えば、川人洋介、丹羽悠介、片山聖二: 溶接学会論文集、28-1(2010)16-21.
- 小澤崇将,加藤数良,野本光輝:溶接学会 全国大会講演概要,94(2014),66-67.
- 小澤崇将,加藤数良,前田将克,野本光輝: 溶接学会全国大会講演概要,95(2014), 52-53.

Fig. 4 Appearances of tensile shear tested specimen.