光学活性[(arene)Ru(pesa)PPh3]PF6のエピマー化反応

日大生産工(院) 〇宮原 千絵美 日大生産工 津野 孝 レーゲンスブルグ大 ヘンリ・ブルナー

1. 緒言

ハーフサンドイッチ型金属錯体 [(arene)M(L-L')L]は、溶液中で一つの配位子を 解離し、16電子不飽和中間体を与える。このよ うな中間体の立体化学の解明は,不斉触媒利用 の観点から極めて重要である。先に演者らは, $[\eta^5$ -CpRu(Prophos)X] (X = Cl, Br, I)^{1,2)}および $[\eta^5$ -CpFe(Prophos)NCMe]X (X = PF₆, $\Gamma^{(2,3)}$ 単座配位子の解離により誘導される16電子不 飽和錯体[η^5 -CpM(Prophos)]⁺の安定性について 報告した。サリチルアルデヒドと(S)-1-フェニ ルエチルアミンから誘導されるpesaは, 重要な 光学活性O-N型配位子である。pesaを二座配位 子として用いた[(η^6 -arene)Ru(pesa)L]は、溶液中 で容易にエピマー化を受けることが報告され ている⁴⁾。これら錯体のエピマー化に対する活 性化パラメータの決定は、16電子不飽和中間体 の立体化学を明確にすることができる。今回, $[(\eta^6 \text{-arene})\text{Ru}(\text{pesa})\text{L}]$ (arene = *p*-cymene, C₆H₆, L = Cl, I)および[(η^6 -C₆H₆)Ru(pesa)PPh₃]PF₆を合 成し、これらのエピマー化反応について報告す る。

2. 実験

 $[(\eta^{6}\text{-arene})\text{Ru}(\text{pesa})\text{Cl}](\text{arene} = p\text{-cymene}, C_{6}\text{H}_{6})の合成: (S,E)-2-((1-phenylethylimino))$ methyl)phenol (8.0×10^{-4} mol)の塩化メチレン溶 液にカリウム*tert*-ブトキシド(1.2 eq.)を加え, 室温で1時間撹拌した。反応溶液を-78°Cまで冷 却し、 $[(\eta^{6}-\text{arene})\text{RuCl}]_{2}\text{Cl}_{2}$ (0.5 eq.)を加え、室 温で16時間撹拌した。反応溶液をセライト濾過 し、展開溶媒を塩化メチレンとしたシリカゲル クロマトグラフィーにより精製し、塩化メチレ ン/ジエチルエーテルで再結晶することにより 褐色粉末の $[(\eta^{6}-p-\text{cymene})\text{Ru}(\text{pesa})\text{Cl}]$ (84%)、 $[(\eta^{6}-\text{C}_{6}\text{H}_{6})\text{Ru}(\text{pesa})\text{Cl}]$ (70%)を得た。

[(η^6 -arene)Ru(pesa)PPh₃]PF₆の合成⁵: [(η^6 -arene)Ru(pesa)Cl](3.8×10^{-4} mol)のCH₂Cl₂ 溶液にPPh₃(1.2 eq.), [NH₄]PF₆(1.2 eq.)を加え撹 拌した。反応溶液をセライト濾過し,濃縮残分 をジエチルエーテルで洗浄し,塩化メチレン/ ジエチルエーテルで再結晶することにより黄 色粉末結晶の[(η^6 -p-cymene)Ru(pesa)PPh₃]PF₆ (92%), [(η^6 -C₆H₆)Ru(pesa)PPh₃]PF₆(93%)を得た。 [(η^6 -C₆H₆)Ru(pesa)PPh₃]PF₆(93%)を得た。 [(η^6 -C₆H₆)Ru(pesa)PPh₃]PF₆(5 mg), CDCl₃(0.4 mL)を加え,¹H NMRにより経時変化 を追跡し,速度定数kを決定し,活性化パラメ $-9\Delta H^{\ddagger}, \Delta S^{\ddagger}, \Delta G^{\ddagger}$ を求めた。

3. 結果·考察

再結晶より得た[(η^{6} -arene)Ru(pesa)Cl] (arene = *p*-cymene, C₆H₆)は,X線結晶構造解析から, 何れも(R_{Ru} , S_{C})/(S_{Ru} , S_{C})-ジアステレオマー比1:1 の混合物であることが明らかとなった。 [(η^{6} -*p*-cymene)Ru(pesa)Cl]のX線構造解析結果

Epimerization of optically-active complexes [(arene)Ru(pesa)PPh₃]PF₆

Chiemi MIYAHARA, Takashi TSUNO and Henri BRUNNER

をFigure 1に示す。これら錯体を213 KでCDCl₃ 溶液中に溶解し, 213 Kにおいて¹H NMR測定を 行った。そのNMRから求められたジステレオ マー比は86:14であり、この数値は変化せず、 定常状態に達している事を示した。この結果は, 213 Kにおいても極めて速い過程で錯体がエピ マー化を受けていること示している。また、 $[(\eta^{6}\text{-arene})\text{Ru}(\text{pesa})\text{I}]$ (arene = p-cymene, C₆H₆)/ \sub ついてもそれぞれ合成, 単離し, 速度測定を試 みたが何れも素早い反転によりジアステレオ マー比が定常状態に達していた。従って, $[(\eta^{6}-\text{arene})\text{Ru}(\text{pesa})X]$ のエピマー化はハロゲン 解離で進行していない事と考察される。 $[(\eta^6\text{-arene})\text{Ru}(\text{pesa})\text{PPh}_3]\text{PF}_6$ (arene = *p*-cymene, C_6H_6)/ \ddagger , [(η^6 -arene)Ru(pesa)Cl] \gtrless PPh₃, NH₄PF₆ 存在下で反応させる事で容易に調製できた。こ の際のジアステレオマー比は96:4であった。 このジアステレオマー混合物を塩化メチレン/ ジエチルエーテルで再結晶し、純粋な $(R_{\text{Ru}},S_{\text{C}})$ -[(η^{6} -*p*-cymene)Ru(pesa)PPh₃]PF₆を得た (Figure 2)_o

Figure 1. Moleculer structures of $(R_{Ru},S_C)/(S_{Ru},S_C) [(\eta^6-p-cymene)Ru(pesa)Cl].$

Figure 2. Moleculer structure of the cation complex of $(R_{\text{Ru}}, S_{\text{C}})$ - $[(\eta^6-p\text{-cymene}) \text{Ru}(\text{pesa})\text{PPh}_3]\text{PF}_6.$

 $(R_{\text{Ru}},S_{\text{C}})-[(\eta^{6}-C_{6}H_{6})\text{Ru}(\text{pesa})\text{PPh}_{3}]\text{PF}_{6}は, \text{CDCl}_{3}$ 溶液中, 274~295 Kの範囲でエピマー化を追跡 する事ができ, エピマー化速度定数と平衡状態 比からそれぞれのエピマー化 k_{\rightarrow} , k_{\leftarrow} を決定し, 活性化パラメータを求めた(**Table 1**)。

次いで、279 KにおいてPPh₃過剰量を加えた ときのエピマー化速度を測定した。速度定数 k_{eq} は、7.3 × 10⁻³ min⁻¹ となり、これは (R_{Ru} , S_{C})-[(η^{6} -C₆H₆)Ru(pesa)PPh₃]PF₆のみの速度 に対し0.38倍であった。この錯体のエピマー化 反応はRu—Nの解離により進行すると考察さ れるが、PPh₃の添加効果は生成した16電子不飽 和中間体へのPPh₃の寄与を示唆する。

 $(R_{\rm Ru},S_{\rm C})-[(\eta^6-{\rm C_6H_6}){\rm Ru}({\rm pesa}){\rm PPh_3}]{\rm PF_6} \qquad (S_{\rm Ru},S_{\rm C})-[(\eta^6-{\rm C_6H_6}){\rm Ru}({\rm pesa}){\rm PPh_3}]{\rm PF_6}$

Table 1. Epimerization of $[(\eta^6-C_6H_6)Ru(pesa)PPh_3]PF_6$ in CDCl₃ and activation parameters

Temp.	Keq	kep	τ 1/2	$k \rightarrow$	k⊷	Equilibrium ratio
(K)		(min ⁻¹)	(min)	(min ⁻¹)	(min ⁻¹)	$(R_{Ru},S_C)/(S_{Ru},S_C)$
295	32.3	6.7×10^{-2}	10	6.7×10^{-2}	2.1×10^{-3}	97/3
284	32.3	2.9×10^{-2}	24	2.9×10^{-2}	8.8×10^{-4}	97/3
279	24.0	1.9×10^{-2}	37	1.9×10^{-2}	7.5×10^{-4}	96/4
279 ^{a)}	24.0	7.3×10^{-3}	95	7.0×10^{-3}	2.9×10^{-4}	96/4
274	24.0	8.8×10^{-3}	79	8.8×10^{-3}	3.5×10^{-4}	96/4
$\Delta H^{\ddagger} \rightarrow (273 \text{K}) = 63 \pm 6 \text{ kJ mol}^{-1}$			$\Delta H^{\ddagger} \leftarrow (273 \text{ K}) = 52 \pm 5 \text{ kJ mol}^{-1}$			
$\Delta S^{\ddagger} \rightarrow (273 \text{K}) = -86 \pm 8 \text{ J mol}^{-1} \text{ K}^{-1}$				$\Delta S^{\ddagger} \leftarrow (273 \text{ K}) = -153 \pm 14 \text{ J mol}^{-1} \text{ K}^{-1}$		
$\Delta G^{\ddagger} \rightarrow (273 \text{K}) = 87 \pm 8 \text{ kJ mol}^{-1}$			$\Delta G^{\ddagger} \leftarrow (273 \text{K}) = 96 \pm 9 \text{ kJ mol}^{-1}$			

a) Addition of a 10-fold excess of PPh3

5. 参考文献

 Brunner, H.; Muschiol, M.; Tsuno, T.; Takahashi, T.; Zabel, M. Organometallics 2008, 27, 3514. 2) Brunner, H.; Tsuno, T. Acc. Chem. Res. 2009, 42, 1501. 3) Brunner, H.; Ike, H.; Muschiol, M.; Tsuno, T.; Koyama, K.; Kurosawa, T.; Zabel, M. Organometallics 2011, 30, 3666. Brunner, H.; Kurosawa, T.; Muschiol, M.; Tsuno, T.; Balázs, G.; Bodensteiner, M. Organometallics 2013, 32, 4904. 4) Brunner, H.; Oeschey, R.; Nuber, B. J. Chem. Soc., Dalton Trans. 1996, 1499.
Mandal, S. K.; Chakravarty, A. R. J. Organomet. Chem. 1991, 417, C59.