N₂微細気泡を用いた貧溶媒法による インドメタシンの晶析現象

日大生産工(院) ○ 大野 真知嗣 日大生産工 佐藤 敏幸, 岡田 昌樹, 松本 真和, 日秋 俊彦

1. 緒言

消炎鎮痛剤であるインドメタシン (IMC) には,安定γ型,準安定β型¹⁾,不安定α型の 三種の結晶構造(多形)が存在する.多形に より溶解性やバイオアベイラビリティーが異 なるため,所望多形を高収率で得るための晶 析技術の開発が望まれている²⁾. 一般に, 有 機結晶の多形制御には等温下において操作過 飽和の制御が容易な貧溶媒晶析を用いる場合 が多い.しかし、不安定型多形の晶析には、 高過飽和を達成するために多量の貧溶媒添加 が必要となる.そこで、本研究では、系内に 局所的な高過飽和場を創成できる微細気泡を IMC の貧溶媒晶析に適用した.気泡の微細化 は, i) 気-液界面積の増大にともなう物質移 動・反応吸収の促進, ii) 浮力の減少に伴う気 泡の平均滞留時間の増加, iii) 気泡の負の表 面電位の増大による気-液界面での相互作用 を引き起こす³⁾.本稿では,IMCの晶析現象 への N2微細気泡の導入効果について述べる.

2. 実験方法

2.1 IMC の溶解度測定

IMC の溶媒および貧溶媒として,エタノー ル (EtOH) および蒸留水 (H₂O) を選択した. EtOH/H₂O 混合溶液に過剰量 (65.0 mmol/l) の IMC ($C_{19}H_{16}CINO_4$, γ 型,和光純薬)を懸 濁させ,溶存 IMC 濃度および残留結晶重量の 経時変化を測定した.時間変化における定常 値より IMC 溶解度 C_8 を求めた.この際,操 作因子として,H₂O 体積割合 V_{H20} を 0 - 90 vol%の範囲で変化させた.

2.2 微細気泡を用いた IMC の貧溶媒晶析 2.2.1 気泡発生装置

微細気泡は, モーターの回転によってイン

ペラー背面に生じる負圧とインペラーの剪断 力を利用した自吸式微細気泡発生装置(Tech Ind.製)を用いて発生させた³⁾. 自吸式装置の 構造を Fig. 1 に示す. N₂モル供給速度 F_{N2} が 0.13 mmol/($l \cdot min$), 回転速度が 4800 min⁻¹の条 件下で, 平均気泡径 d_{bbl} が 10 μ m の N₂ 微細気 泡を得た.

Fig. 1 Structure of self-supporting type bubble generator

2.2.2 貧溶媒晶析操作

溶液温度が 298 Kにおいて, γ型の IMC 飽 和溶液 (IMC 濃度は 55.0 mmol/l)に H₂O を混 合すると同時に, N₂ 微細気泡を連続供給し, IMC を晶析させた. EtOH/H₂O 混合溶液の総 体積を 1500 ml で一定とし, V_{H2O} を 0 - 90 vol% の範囲で変化させた. 晶析時間 t は 5 min 以 内とした. 比較として, N₂ 微細気泡を供給せ ず, 攪拌機 (プロペラ型 4 枚羽根)を用いた 晶析操作を行った. 所定時間晶析後, 結晶懸 濁液を吸引ろ過し, 313 K で減圧乾燥させた. 析出多形の同定は XRD 法により行った.

3. 実験結果および考察 3.1 貧溶媒の体積割合と過飽和比の相関

Crystallization Phenomena of Indomethacin by Antisolvent Method Using N₂ Minute-bubbles

Masatoshi OHNO, Toshiyuki SATO, Masaki OKADA, Masakazu MATSUMOTO and Toshihiko HIAKI V_{H20} と C_S および貧溶媒晶析操作における IMC 初濃度 C_0 の相関を Fig. 2 に示す.また, C_0 と C_S から算出した液相内の過飽和比 C_0/C_S も示す. C_S および C_0 は V_{H20} の増加にともな い減少することがわかる.結果として, V_{H20} の増加に応じて C_0/C_S は増大することを確認 した.

Fig. 2 Relation between V_{H2O} and C_{S} , C_0 , C_0/C_{S}

3.2 微細気泡の導入が IMC 生成モル濃度の 時間変化に及ぼす影響

各過飽和比における IMC の生成モル濃度 $G_i(i = \alpha, \beta, \gamma)$ を **Fig. 3** に示す.

 C_0/C_s が4.9, tが3minの晶析操作で、微細気 泡を供給した場合の生成モル濃度 G_i は48.2 mmol/lであり、供給しない場合($G_i = 39.2$ mmol/l)に比べ増大した.この際、得られた多 形は微細気泡の供給によらず不安定 α 型であ

った. C₀/C_sが4.9では,貧溶媒添加により生成する過飽和が多形の選択性に対して支配的であることがわかる.また,C₀/C_sが3.2では,C₀/C_sが低く貧溶媒添加のみでは核化しない領域であっても結晶核が短時間で生成することが確認された.微細気泡の導入による生成モル濃度の増大および核発生の促進は,気泡の表面電位による気-液界面近傍でのIMCおよび貧溶媒の濃縮⁴⁾に起因すると推測される. 3.3 IMC の核発生速度および生成速度に対する微細気泡の導入効果

 C_0/C_s と IMC の核発生速度 $r_{nuc.}$ および不安 定 α 型の生成速度 r_a の相関を Fig. 4 に示す. $r_{nuc.}$ は核発生誘導期(結晶核の生成が確認され るまでの待ち時間)の逆数である.また, r_a は晶析初期における生成モル濃度の時間変化 の傾きより算出した.微細気泡の導入によら ず $r_{nuc.}$ および r_a は C_0/C_s に対し正の相関を示 した.また,微細気泡の導入による $r_{nuc.}$ およ び r_a の増大は C_0/C_s が低い領域でより顕著と なることがわかる.

Fig. 4 Relation between C_0/C_s and $r_{\text{nuc.}}$, r_{α}

Literature cited

- N. Kaneniwa *et al.*, *Chem. Pharm. Bull.*, **33**(8), 3447-3455 (1985)
- 2) T. Minamisono, H. Takiyama, J. Cryst. Growth, **362**, 135–139 (2013)
- M. Matsumoto, T. Fukunaga, K. Onoe, *Chem. Eng. Res. Des.*, 88, 1624-1630 (2010)
- M. Matsumoto, Y. Wada, A. Oonaka, K. Onoe, J. Cryst. Growth, 373, 73–77 (2013)