パルス音源を用いたダクト開口端反射減衰の2次元数値解析* -バッフル有りの場合-

○城山隼人(院),首里卓実(院),豊谷純,塩川博義(日大生産工)

はじめに 1

ダクト開口端反射減衰とは、送風機や気流 による発生音によって生み出されたダクト内 を伝搬する騒音の一部がダクト開口端から外 部に放出されず、ダクト内部へ反射する現象 である。本研究では、この現象を明らかにす ることを目的とする。

既報¹⁾²⁾³⁾では、差分法を用いてダクト開口 端における音圧の減衰変化量を可視化アニメ ーションにして、高い周波数より低い周波数 の音波の方が、ダクト内へ反射するエネルギ 一量が大きいというダクト開口端反射現象の 特徴を明らかにした。また実験値との比較検 証も行い、本計算結果の妥当性を示した。ま た、開口端から放出された音の伝搬の音圧分 布について、音の波長よりも開口端の直径が 小さいと開口端反射が起こりやすいことを確 認した。さらに、直径が小さくなるにつれて、 反射の程度が大きいことも確認した。

一般的に空調ダクトの消音設計における開 口端反射減衰量の指標として使用されている ものは、アメリカ暖房空調学会による ASHRAE の値¹⁾であり、円形断面の直径また は長方形断面の有効直径と周波数によって値 を求める。

本報はシミュレーション結果をフーリエ変 換し求めた開口端反射減衰量と ASHRAE の 値を比較検討したので報告する。

(qB) 開放端反射減音量 f×l (Hz·m) $f: 周波数(Hz), l = \sqrt{l_z l_y}$ (m)円形断面では直径 D l_x, l_y:長方形断面の辺長 (m) Fig.1 ASHRAEの図

基礎方程式 2

本計算結果の妥当性を検証するために、開 口端を3次元から2次元に置き換えて比較した。 ほかのシミュレーションと同様に、連続の式 と運動量保存則から得られる波動方程式を適 用し、また差分法を時空間領域に適用して離 散化を行う(式(1))。

$$\frac{\partial^2 p}{\partial t^2} = c^2 \left(\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} \right)$$
(1)

ただし、

p:音圧[dB]

c: 空気中の音速[m/s]

とする。

またダクト内部における境界条件には、並 行波の条件(式(2))、ダクト外部に放出された パルス音が、バッフル以外の壁面と接触する 際には、Murの境界条件を用いた。ただし、 *pn[duct]、po[duct*]は内側壁面における新、旧 の音圧で、*po[duct-1*]は内側壁面から1つ内側 の計算格子上の音圧である。

pn[duct] = po[duct-1](2)

3 解析例

3.1 シミュレーションモデル

シミュレーションモデルはバッフルが有る 状態の 200mm の円形断面ダクトで、対象領 域は Fig.3、分割数は x 方向に 2000、 y 方向に 20 で 2 次中心差分を適用した。なお、音源は

*Two-dimensional numeric simulation of end reflection loss of duct by pulse sound source with baffleby SHIROYAMA Hayato SHURI Takumi, TOYOTANI Jun, SHIOKAWA Hiroyoshi.

3.2 時系列波形

Fig.3 はシミュレーション値からダクト内 部の観測点における時系列波形を取り出し、 開口端へ向かう入射波と開口端反射波を分離 して表したものである。いずれもフーリエ変 換をするために両側を0にする。

3.3 開口端反射減衰量の算出方法

Fig.4 に示すように開口端において、ダクト からの入射波のエネルギーIi は内部への開口 端反射波のエネルギーIr と外部への放射波の エネルギーIt に分離されるものと仮定する。 そこで、観測点で求めた入射波のエネルギー Ii と開口端反射波のエネルギーIr とを減算し (式(2))、放射エネルギーIt を算出した。入射 波のエネルギーIi と放射エネルギーIt からそ れぞれのレベルを求め、L_{li} と L_{lt} との差から 開口端反射減衰値 ΔL を求める(式(4))。

Fig.4 開口端における音波の伝搬

4 数値計算結果

本計算結果として、周波数 50~1500[Hz]ま でを範囲として、バッフルがある場合のシミ ュレーション結果をフーリエ変換で周波数ご とにした反射減衰量と ASHRAE の値を比較 したものを Fig.5 に示す。本計算結果は概ね 一致し、二次元シミュレーションとフーリエ 変換による解析例は妥当だと判断できる。周 波数が 50[Hz]における反射減衰量の誤差が最 も大きく 1[dB]ほどになる。

Fig.5 バッフルが有るときの数値計算結果と ASHRAE の比較

5 まとめ

本論では、バッフルがあるときの開口端反 射を差分法で二次元シミュレーションし、フ ーリエ変換で得た減衰量を、ASHRAEの図と 比較した。

今後は本解析例を実験で反映し、最適な実 験方法を模索すると共に、シミュレーション では、室内の空調設備を再現する予定である。

参考文献

- [1] 生野、豊谷、塩川,2次元数値シミュレーションを用いたダクト開口端における音
 響解析,秋季音響学会講演論文集,日本
 音響学会,P.109,2010年9月
- [2] 生野、豊谷、塩川,ダクト開口端における音響数値シミュレーション,秋季音響学会講演論文集,日本音響学会, P.25, 2011年9月
- [3] 城山、豊谷、塩川,差分法を用いたダクト開口端における音圧分布の数値解析, 秋季音響学会講演論文集,日本音響学会, P.69,2012年9月
- [4] 城山、首里、豊谷、塩川,差分法を用いたダクト開口端反射減衰の数値解析,秋季音響学会講演論文集,日本音響学会, P.17,2013年9月