強磁性伝熱管のパルス渦電流試験における探傷信号の SN 比

日大生産工(院) 〇藤井 雄太 日大生産工 小井戸 純司

日大生産工(研究員) 日比野 俊

1. はじめに

火力発電所や各種プラント等において 1~2 年周期で熱交換器の保守検査が行われている。 伝熱管の約 70%以上は強磁性体の鋼管が用い られているが、これに対して内挿コイルを用い た渦電流探傷試験を適用すると、強磁性材料特 有の磁気ノイズによって SN 比が低下するため 探傷が困難である。そこで、瞬間的に強い電流 を流すことができるパルス渦電流試験を用い ることによって、鋼管を強く磁化することによ り磁気ノイズが低減し、鋼管を探傷することが 可能となる。しかし、現状では磁気ノイズを完 全には抑制できていないため、パルス励磁電流 の大きさや幅を調整して磁気ノイズの低減に 適した条件を検討する必要がある¹⁾。そこで、 本研究ではパルス励磁電流のパルス幅と振幅 がきず信号の SN 比に与える影響を検討した。

2. パルス渦電流試験の原理

(1)パルス渦電流試験

Fig.1 にパルス渦電流試験のシステムを示す。

通常の渦電流探傷試験では、励磁コイルに供給 される励磁電流は単一周波数の正弦波である。 これに対し、パルス渦電流探傷試験では、パル ス電流発生装置から供給されるパルス状の短 い電流により、パルス状の磁束が発生し、その 磁束によって試験体は磁化され、また同時に渦 電流が誘導される。試験体に生じる渦電流は、 試験体のきずの存在によってその分布が変化 し、検出コイルの起電力が変化する。それに対 し同調増幅によって特定の周波数成分を取り 出し、同期検波などの信号処理を施し、探傷信 号として出力する。

(2)信号処理回路

試験コイルを走査して、コイルがきずを通過 したときにブリッジバランスが崩れ、きず信号 が出力される。そのきず信号は歪み波なので、 低次から高次まで多くの高調波を持っている が、この高調波成分の中で、きずの検出に適 した周波数成分が存在すると考えられる。そこ で、同調増幅器を用いて特定の成分を取り出し、

Ferromagnetic Heat Exchanger Tubes of Pulsed ECT to SN ratio Yuta FUJII, Junji KOIDO and Takasi HIBINO

さらに同期検波回路によって、複素電圧の実数 部と虚数部に分解したものを信号として出力 する。

(3)SN比の評価

きず信号の大きさは、信号の正負の peak to peak 値 S_{PP}を採用した。ノイズは、磁気ノイズの平均的なパワーを評価するため、交流的なノイズ波形の実効値として式(1)を用いる。

ここで Nはデータの個数であり、 \bar{x} は x_i の平 均値である。なお、ノイズとしてはきずときず の間の雑音を用いることにし、外面きず 70%か ら 60%のきず信号の間の雑音を採用した。以上 より SN 比は、きず信号の大きさとノイズの比 とする。すなわち、

である。

3. 実験方法

(1)試験体

Fig. 2 に試験体を示す。試験体には、外径 19[mm]、肉厚 2[mm]の STB340 の鋼管に全周減 肉の人工きずを加工したものを用いた。きずは 減肉率 10%の内面きず、減肉率 10%から 70%まで の外面きず、直径 2[mm]の貫通ドリル孔など合 計 9 個を加工してある。なお、全周減肉きずの 幅は、内外面ともに 1.5[mm]である。

Fig.2 Test specimen (STB340)

(2)試験コイルおよび実験方法

Fig.3 に試験コイルの構造を示す。パルス渦 電流探傷試験の試験コイルには相互誘導形差 動方式の内挿コイルを採用した。試験コイルは、 鋼管の中に導入してから一定の速度で引き抜 き、その際に発生するきず信号をディジタルオ シロスコープで記録する。なお、試験条件はパ ルス間隔 1[ms],同調周波数 8[kHz],探傷器の 感度 38[dB]とし、パルス幅 300[µs]あるいは 400[µs]で励磁電流の振幅を 3~15[A]まで変え た場合と、励磁電流を 10[A]一定としてパルス 幅を 50~800[µs]まで変えた場合について実験 した。ノイズはきずときずの間の雑音の交流成 分を抽出し、前述した方法により、きず信号の SN 比を求めた。

Fig.3 Mutual-induction type coil arrangement

4. 実験結果

(1) パルス渦電流試験による探傷波形

Fig. 4、5、6 に探傷波形を示す。Fig. 4 はパ ルス幅100[µs]、励磁電流10[A]の場合である。 同図を見ると、減肉率 70%から 30%の外面きず を検出しているが、磁気ノイズがあまり低減で きていない。次に、Fig. 5 はパルス幅 300[µs]、 励磁電流 10[A]の場合である。Fig. 4 と同様に 減肉率 70%から 30%の外面きずを検出し、磁気 ノイズが低減されている。また、Fig. 6 はパル ス幅 500[µs]、励磁電流 10[A]の場合である。 同図を見てみると、磁気ノイズは低減されてい るが、きず信号も小さくなっている。このこと から、パルス幅が広いと磁気ノイズを低減する ことができるが、パルス幅がさらに広いと磁気 ノイズだけでなく、きず信号まで小さくなって しまうことが分かった。

(b)Imaginary component of signal

(a)Real component of signal

⁽b)Imaginary component of signal Fig.5 Ip-p=10A,T=1ms,tp=300µs,Gain=38dB

(a)Real component of signal

(b)Imaginary component of signal

Fig.6 Ip-p=10A,T=1ms,tp=500µs,Gain=38dB

(2)パルス渦電流試験に対する SN 比の評価

Fig.7 にパルス幅を一定としたときの励磁電 流 3~15[A]における SN 比を示す。Fig.7(a)は パルス幅が 300[µs]の場合である。同図を見る と、励磁電流のピーク値の増加に対して SN 比 が減少している傾向が見られる。また、減肉率 60%と 50%の外面きずにおける SN 比が逆転して いる。これは 60%のきずの部分の磁気的特性が 他と異なっていることが原因と考えられる。一 方、Fig.7(b)はパルス幅が 400[µs]の場合であ る。励磁電流のピーク値の増加に対して SN 比 が減少していることもFig. 7(a)と同様である。 また、Fig.7(a)と同様に減肉率 60%と 50%の外 面きずにおける SN 比が逆転している。

次に Fig. 8、9 は励磁電流 10 [A] 一定で、パル ス幅 50~800[µs]の場合のきず信号,磁気ノイ ズ, SN 比の変化を示す。Fig. 8(a)を見ると、パ ルス幅が 300[µs]を越すと急激に信号が減少し 400~500[µs]で極小になり 500 [µs]を過ぎる と増大している。一方、Fig.8(b)を見ると、ノ

イズもパルス幅の増加と共に減少し 400~ 600[µs]で極小値になる。Fig.9を見るとパルス 幅の増加に対して SN 比は増加傾向であるが、 400~500[µs]で極小値となっている。これは Fig.8、9に示した通り、きず信号の減少傾向が ノイズの減少傾向より大きいため SN 比は 400 ~500[µs]で極小となると考えられる。

Fig.7 SN ratio for Excitation current

(b)Noise Fig.8 Flaw signal and Noise for pulse width

5. おわりに

鋼管のパルス渦電流試験において、パルス励 磁電流のパルス幅と振幅がきず信号の SN 比に 与える影響を検討した。

初めに、励磁電流10[A]一定でパルス幅が100 ~500[µs]の探傷波形については、パルス幅が 100[µs]の場合は磁気ノイズが低減できておら ず、パルス幅が 300[µs]、500[µs]と広くなる につれて磁気ノイズが減少することが確認で きた。また、パルス幅を100~800[µs]まで変え たままの外面きずの信号とノイズを調べてみ ると、パルス幅が 400~500[μs]において、き ず信号とノイズが共に極小値となっているこ とが確認できた。このことから SN 比を求める とパルス幅が 400~500[μs]で極小値となって いることも確認できた。次に、パルス幅 300[µs] あるいは400[µs]で励磁電流の振幅を3~15[A] までの SN 比について、300[µs]では励磁電流の 増加に対して SN 比が減少していることが確認 できた。また、300[µs]および 400[µs]に共通 し減肉率 60% と 50% の外面きずにおける SN 比が 逆転していることも確認できた。よって、パル ス幅については SN 比が極小となる 500[µs]前 後を除き 300[µs]と 700[µs]が SN 比として良い がコイルの発熱を考えると 300[µs]の方が最も 適していることが分かった。なお、励磁電流を 大きくすると SN 比が低下するので、励磁電流 を小さくした場合について、SN 比を検討する必 要がある。

参考文献

 小井戸純司,加藤修一,内挿コイルを用いた パルス渦電流試験による強磁性伝熱管の探傷, 非破壊検査,61巻,7号,2012,pp.331~340