コンクリート充填長方形鋼管の構造性能に関する研究

-その3 長方形 CFT の曲げ性状-

日大生産工(院) 〇荒井 望 日大生産工(院) 長崎 透 日大生産工 藤本 利昭

1 はじめに

前報(その2)¹⁾では、コンクリート充填長方形 鋼管(CFT)柱の圧縮性状について検討を行った。 本報では、前報に引き続き同断面形状の長方形 CFT柱の曲げ性状について検討を行った。

2 実験概要

2.1 試験体

図-1に試験体詳細図,表-1に試験体一覧を示 す。また,表-2に鋼材の材料試験結果を示す。 また,表-3にコンクリートの材料試験結果を示 す。なお,試験体の支点間距離は,断面せい(D) の6倍とした。

2.2 加力および計測

実験は3点曲げ試験とし、試験体両端部より 50mmの位置を支点とし、試験体中央に幅 100mm厚さ20mmの加圧プレートを設け、試験 体変形角が5%を超えるまで載荷した。測定に は、試験体側面に2ヶ所、底面に2ヶ所、合計4 ヶ所に変位計を取り付け、変位計から得られた 中央のたわみδを用いて、各試験体の変形角 R(=δ/(L/2))を測定した。

3 実験結果および考察

3.1 曲げ耐力の比較

表-4に実験における最大曲げモーメント M_{exp} と,日本建築学会「コンクリート充填長方 形鋼管設計施工指針(CFT指針)」²⁾に基づく計算 値 M_{cal} との比(M_{exp}/M_{cal})を示す。実験における最 大曲げモーメント M_{exp} は,加圧プレートの拘束 による影響を考慮して, $M_{exp}=(P/2)\times(L-100)/2$ と して評価している。正方形断面では、1.10~1.20 となり、長方形断面では、1.07~1.15となった。 正方形断面では、3体の試験体共に耐力比が1.0 を大きく上回った。長方形断面においては、正 方形ほどではないが耐力比が1.0を大きく上回 り、特にB×D=150mm×75mmの試験体が他と比 べ大きな値を示した。

				一般化	鋼管材料	設計基準		
	幅×せい	板厚	幅厚比	幅厚比	強度	強度	支点間距離	
	В×D	t	B/t	α		Fc	L	
	(mm)	(mm)	(D/t)		(N/mm^2)	(N/mm^2)	(mm)	
正方形	75×75	3.01	24.9	1.08		21.0	450	
	100 × 100	2.97	33.7	1.48			600	
	150×150	4.17	36.0	1.68	400		900	
長方形	150 × 75	3.03	49.5(24.8)	2.13(1.06)	(STKP400)		450	
	75×150	3.03	49.5(24.8)	2.13(1.06)	(311(1400)		900	
	150×100	3.05	49.2(32.8)	2.29(1.53)			600	
	100×150	3.05	49.2(32.8)	2.29(1.53)			900	
():短辺方向を使用した値								

表-1 試験体一覧

 $\alpha = D/t \cdot \sqrt{(\sigma_y/E_s)}$

表-2 材料試験結果(鋼管)

	降伏強度	引張強度	ヤング係数	伸び率	
幅×せい	σ,	σ _t	Ec	3	
	(N/mm ²)	(N/mm ²)	(kN/mm ²)	(%)	
75 × 75	384	452		41.6	
100 × 100	397	467		29.5	
150×150	447	480	205	31.3	
150 × 75	379	428		29.5	
150×100	446	489		30.4	

Study on Structural Performance of Concrete Filled Rectangular Steel Tube — Part.3 Flexural Behavior of Concrete Filled Rectangular Steel Tube —

Nozomu ARAI, Toru NAGASAKI and Toshiaki FUJIMOTO

試験体名 B×D	支点間 距離 L	板厚 t	コンクリ ート幅 B。	降伏 強度 σ _ッ	コンクリ ート強度 の _B	中立軸 位置 X _n 、	計算値 M _{cal}	実験値 M _{exp}	最大荷重 P	耐力比 	限界 部材角 R _u
(mm)	(mm)	(mm)	(mm)	(N/mm2)	(N/mm2)	(mm)	(kN∙m)	(kN∙m)	(kN)	M _{cal}	
75 × 75	450	3.01	68.98	384		26.9	9.80	11.8	135.2	1.20	0.0896
100×100	600	2.97	94.06	397	29.936	32.4	18.6	22.0	176.2	1.18	0.0715
150 × 150	900	4.17	141.7	447		49.3	66.3	73.2	366.0	1.10	0.0507
150 × 75	450	3.03	143.9	379		20.8	16.4	19.0	216.8	1.15	0.0732
75 × 150	900	3.03	68.94	379	00.000	52.7	28.2	30.5	152.5	1.08	0.0628
150×100	600	3.05	143.9	446	29.930	29.3	28.4	31.3	250.0	1.10	0.0603
100 × 150	900	3.05	93.90	446		50.5	38.9	41.7	208.5	1.07	0.0449

表-4 実験結果一覧

 $\mathsf{M}_{\mathsf{cal}} = \sigma_{\mathsf{y}} \cdot \mathsf{X}_{\mathsf{n}} \cdot \mathsf{B} \cdot (\mathsf{D} - \mathsf{X}_{\mathsf{n}}) - \sigma_{\mathsf{y}} \cdot (\mathsf{X}_{\mathsf{n}} - \mathsf{t}) \cdot \mathsf{B}_{\mathsf{c}} \cdot (\mathsf{D} - (\mathsf{X}_{\mathsf{n}} + \mathsf{t})) + \sigma_{\mathsf{B}} \cdot (\mathsf{X}_{\mathsf{n}} - \mathsf{t}) / \mathsf{B}_{\mathsf{c}} \cdot (\mathsf{D} - (\mathsf{X}_{\mathsf{n}} + \mathsf{t})) / 2$

 $X_n = t \cdot (2 \cdot D \cdot \sigma_y + B_c \cdot \sigma_B) / 4 \cdot t \sigma_y + B_c \cdot \sigma_B$

図-3 曲げモーメント-変形角関係

3.2 曲げモーメント-変形角関係

図-3~図-5 に曲げモーメント-変形角関係を 示す。なお、図の縦軸は実験における曲げモ ーメント M を計算値 M_{cal} で除したもので,横 軸は変位計から得られた変形角 R で表してい る。図-3(a)に正方形断面の曲げモーメント-変形角関係を,(b)に長方形断面の曲げモーメ ント-変形角関係を示す。同図(c)には同じ幅で 異なるせいの長方形断面を比較したものを, (d)には異なる幅で同じせいの長方形断面を 比較したものを示す。 図-3(a)より,正方形断面においては,幅厚 比が最も小さい B×D=75mm×75mm の試験体 の,変形能力が最も大きく,最大曲げモーメ ント近くになってからグラフの勾配が緩やか に上昇し,大きな変形能力を示した。また, 幅厚比が最も大きい150mm×150mmの試験体 については,変形能力が最も小さく,最大曲 げモーメントに最も早く達しており,その後 の耐力低下も他の試験体と比べ大きくなった。 図-3(b)より,長方形断面においては,同図 (a)と比較すると,断面せい(D)が大きい B×D=75mm×150mm と100mm×150mmの試験 体が,150mm×150mmの試験体と近い性状を 示した。また,断面幅(B)が大きい 150mm×75mmと150mm×100mmの試験体で は概ね75mm×75mmの試験体に近い性状を示 し,他2体の試験体に比べ耐力比,変形能力 共に大きい値を示した。

図-3(c)より,同じ幅(B)で異なるせい(D)の

図-4 断面せいの差異による比較

長方形断面の試験体 $B \times D = 150 \text{mm} \times 75 \text{mm}$ と 150 mm×100 mm においては,最大耐力比 M_{exp}/M_{cal} がせいの小さい試験体のほうが大き くなり,その後の耐力低下もせいの小さい試 験体のほうが緩やかになった。

図-3(d)より,異なる幅(B)で同じせい(D)の 長方形断面の試験体 B×D=75mm×150mm と 100mm×150mm においては,幅の小さい試験 体のほうがわずかに耐力比は大きくなったが, ほぼ同様のグラフ形状がみられた。

図-4に、断面せいの差異による比較を示す。

図-4(a)より,最大耐力と変形能力共に断面 せいの小さい正方形断面のほうが大きな値を 示している。同様に図-4(b)より,断面せいの 小さい正方形断面のほうが最大耐力は大きな 値を示した。また(a)程ではないが,変形能力 も正方形断面のほうがわずかに上回っている。

図-4(c)より,変形能力は断面せいが小さい 長方形断面のほうが大きな値を示した。最大 耐力比でも図-4(a),(b)程ではないが,長方形 断面のほうがわずかに上回った。

以上のことから,全体的に耐力比,変形能 力共に断面せいの違いにより大きな変化がみ られたことから,断面せい(D)の影響が大きい ことがわかる。

図-5 に、断面幅の差異による比較を示す。 図-5(a)より、変形能力に大きな変化はみら れなかったが、最大耐力では断面幅の小さい 正方形断面のほうがわずかに上回っている。

同様に図-5(b)では,最大耐力,変形能力共 に断面幅の小さい正方形断面が,大きな値を 示している。

図-5(c)においては、正方形断面と長方形断 面には大きな違いはみられなかった。

以上のことから,全体的に耐力比,変形能 力共に断面せいに比べ断面幅の違いにより, 大きな差異はみられなかったことから,断面 幅(**B**)の影響は小さいものと考えられる。

3.3 一般化幅厚比との関係

図-6に、曲げ実験より得られた限界部材角 Ru²⁾と一般化幅厚比αとの関係を示す。なお、 図中の長方形断面の一般化幅厚比の算定には、 断面幅(B)、断面せい(D)、BとDの平均値を 用いた場合の3通りを示している。同図から、 一般化幅厚比が大きくなるほど限界部材角が 小さくなることがわかる。また、長方形断面 の一般化幅厚比の算定にBとDの平均を用い ると、限界部材角の評価は正方形とほぼ同様 の傾向になった。 ただし,同一断面形状で載荷方向が異なる 場合には,長辺方向に載荷した場合に比べ, 短辺方向に載荷した場合の限界部材角が大き くなる傾向がある。

4 結論

長方形 CFT 柱の曲げ実験により,以下の知 見が得られた。

- 曲げ実験の最大曲げモーメントに関しては、断面せいを用いた幅厚比(D/t)の影響が顕著である。
- ・曲げ実験の限界部材角の評価において、 幅厚比の算定にBとDの平均を用いることで、概ね正方形と同様に評価することができる。
- ただし、同一断面形状で載荷方向が異なる場合には、長辺方向に載荷した場合に比べ、短辺方向に載荷した場合の限界部材角が大きくなる傾向があり、今後の検討課題である。

図-6 限界部材角と一般化幅厚比の関係

参考文献

- 長崎透,他:コンクリート充填長方形鋼 管の構造性能に関する研究-その2 長 方形 CFT の圧縮性状-,第46回日本大 学生産工学部学術講演会,2013.12
- 日本建築学会:コンクリート充填鋼管構 造設計施工指針,2008.10.