フープ形状の異なる場所打ちコンクリート杭の中心圧縮実験

憲貴	○師橋	日大生産工
義行	村田	高周波熱錬株式会社
利昭	藤本	日大生産工

1. はじめに

近年,場所打ちコンクリート杭のせん断補 強筋(以下,フープと称す)として高強度せん 断補強筋が用いられている。高強度せん断補 強筋を使用する工法の設計指針¹⁾では,円形 フック付き単筋のフックは隣接する2本以上 の主筋にフックを掛けて定着することとなっ ているが,フックの重ね長さやフックの端部 の定着方法を変化させた場合の性能について 評価した研究は少ない。

そこで本研究は,重ね部分の長さやフック の端部の定着方法を変化させた場合のフープ 形状の異なる場所打ちコンクリート杭の中心 圧縮実験を行い、その最大耐力について検討 を行ったものである。

2. 実験概要

表-1 に試験体詳細を示す。試験体は,高さ 900mm,断面の直径がかぶりコンクリートが有 る場合は 300mm,かぶりコンクリートが無い 場合は 250mm の円柱試験体である。図-1 に試 験体断面を,また図-2 に試験体側面を例示す る。フープ形状は,フックの長さ (5d,12d,20d,30d),重ね長さ(13.3d,40d,1 周),フックの折り曲げ角度(45°,90°),間 隔(75mm,150mm)を変化させた。また,フープ をスパイラルに置き換えたものを計画した。

試験体名	计睑体力	主筋	補強	ì筋		フック		かどし回さ
	鉄筋種類	鉄筋種類	形状	長さ	重ね長さ	角度	かふり厚さ	
No. 1	9-D13	補強筋なし	—	—	—	-	31.4mm 注)	
No.2					40.0d(256mm)			
No.3			フープ	12d(77mm)	13.3d(85mm)	90°		
No.4		116 4@75			_			
No.5	(SD345)	(SD345) (SPDD1275)	スパイラル	_		_	25mm	
No.6					1 周			
No.7			フープ	20d(128mm)	40.0d(256mm)	45°		
No.8				30d(192mm)	40.00(2301111)	40		
No.1-n	主筋なし	補強筋なし	—	-	—	_		
N0.3-c	9-D13 (SD345) U6.4@1 U6.4@1 U6.4@1 U6.4@ (SBPD1	116 4@75	フ _プ	12d(77mm)	13.3d(85mm)	٥٥°	_	
N0.4-c		(SPD1275)		120(771111)		30		
N0.5-c		(30FD1273)	スパイラル	-		-		
No.4 - w		U6.4@150		12d(77mm)				
No.4-s		110 4@75	– –	5d(32mm)	_	90°	05	
No.4-f		U0.4@/0)—)	12d(77mm)			Zomm	
No.9		(30-012/3)		20d(128mm)		45°		
注)№1のかぶり厚さは、主筋の外周から試験体表面までの長さを示す。他の試験体については補強筋から試験体表面までの長さを示す。								

表-1 試験体詳細

Centrally Loaded Compression Tests of Cast-in-place Reinforced Concrete Pile with Different Shapes of Hoop

Noritaka MOROHASHI, Yoshiyuki MURATA and Toshiaki FUJIMOTO

図-1 試験体断面

No.1 補強筋無

No. 1-n

主筋無

主筋は、9-D13 (SD345, σ_y =379N/mm², E=1.77×10⁵ N/mm²),フープは、U6.4 (SBPD1275, σ_{max} =1418 N/mm², E=1.87×10⁵ N/mm²)を使用した。コンクリ ートは、実験時の目標コンクリート強度を 27 N/mm²とした普通コンクリートを用いた。コンク リートの打設は、試験体上部からの縦打ちとし、型枠には紙管(ボイド)を用いた。

3. 載荷及び測定方法

図-3に載荷及び測定方法を示す。載荷は単 調載荷で、下部を固定、上部を球座とし 5000kN 試験機を使用して中心圧縮力を載荷 した。試験体中央部(検長 600mm)における軸 方向変位を、試験体に埋め込んだボルトに取 り付けた8本の変位計で2方向測定を行った。

4. 実験結果

表-2に実験結果一覧を示す。表中のPexp.

No.3 重ね(13.3d) No.5 スパイラル

図−3 載荷および測定方法

試験体名	P _{exp.} (kN)	P _{cal.} (kN)	P _{exp.} ∕P _{cal.}
No.1	2216	1889	1. 17
No.2	2320	2083	1. 11
No.3	2166	2083	1.04
No.4	2347	2083	1. 13
No.5	2299	2083	1.10
No.6	2153	2083	1.03
No.7	2347	2083	1. 14
No.8	2220	2083	1.07
No.1 - n	1455	1455	1.00
No.3 - c	1912	1639	1. 17
No.4 - c	2240	1639	1. 11
No.5 - c	2003	1639	1. 22
No.4 - w	2252	2083	1.08
No.4 - s	2220	2083	1. 08
No.4 - f	2420	2083	1. 16
No.9	2281	2083	1. 09

表-2 実験結果一覧

は最大荷重(圧縮強度)を示し, P_{cal.}は既往のコ ンファインドコンクリートの圧縮強度を定量 的に評価を行っている Richart らの実験式²⁾を 適用した計算値を示した。

図-4 a)~c)に荷重–軸方向変形関係を例 示する。試験体の軸方向変形は、図-3 に示し た4本の変位計により測定した変形量を試験体 表面位置の変形量に補完して求めた。a)図はフ ープが無く主筋のみの No.1 と、さらに主筋も

無くプレーンコンクリートの No.1-n を併せて 示したものである。No.1 の P_{exp.}=2216kN と No. 1-nのPexp.=1455kNの差は主筋 9-D13の負担 分と考える。b)図はフープのフックの長さが同 -(12d)で重ね長さが異なる No.3 と No.4 を比 較したものであるが、Pexp.とPexp.後の変形性能 (下り勾配)に差はさほど認められなかった。同 図には、スパイラルで補強した No.5 を併せて 示したが、No.5はフープで補強した試験体と比 較し、剛性と Pere 後の変形性能(下り勾配)がフ ープを用いて補強した試験体より高い傾向を 示した。c)図はかぶりコンクリートの有無を比 較するため、フープのフックの長さと重ね長さ が同一でかぶりコンクリートの有る No.3 とか ぶりコンクリートの無い No.3-c を比較したも のである。かぶりコンクリートの無い No. 3-c はかぶりコンクリートの有る No.3 と比較して, P_{exp.}に至るまでと、P_{exp.}後の荷重一軸方向変位 の履歴が低くなる傾向を示した。

図-5 は最大荷重 P_{exp}.を, Richart らの実験式 による計算値 P_{cal}.で除し,最大荷重比 P_{exp}./P_{cal}. として示したものである。Richart らの実験式 を式(1)~(3)に示す。

 $_{\mathbf{c}} \sigma_{\mathbf{cB}} = _{\mathbf{c}} \sigma_{\mathbf{B}} \operatorname{No. 1-n} + 4.1 \sigma_{\mathbf{r}} (kN/mm^2) \cdots (1)$

$$\sigma_{\mathbf{r}} = \frac{2a_{\mathbf{v}}}{D_{\mathbf{c}} \cdot s} \sigma_{\mathbf{v}\mathbf{y}} (kN/mm^2) \qquad \cdots \cdots (2)$$

$$P_{cal.} = \left\{ \left[\frac{300}{2} \right]^2 - \left[\frac{250}{2} \right]^2 \right\} \times \pi \times \sigma_{B \text{ No. 1-n}}$$

$$+ \left[\frac{250}{2}\right]^2 \times \pi \times \left[1 + 4.1 \frac{\mathbf{c} \, \sigma_{\mathbf{cB}}}{\sigma_{\mathbf{B} \, \mathbf{No.1-n}}}\right] \times \sigma_{\mathbf{B} \, \mathbf{No.1-n}}$$
$$+ 9 \times \mathbf{a}_{\mathbf{t}} \times \sigma_{\mathbf{y}} \quad (kN) \qquad \dots \dots \dots \dots (3)$$

 $c\sigma_{cB}$:コンファインドコンクリートの最大圧縮 応力度, σ_{r} :側圧, a_{v} :フープ断面積, D_{c} : コンファインドコンクリートの直径, s:フー プ間隔, σ_{vv} :フープ降伏応力度, a_{t} :主筋断 面積, σ_{v} :主筋降伏応力度

図−4 荷重−軸方向変形関係

Richart らの実験式の適用に当たっては, 主 筋が無くプレーンコンクリートの No.1-n の最 大荷重を基にプレーンコンクリートの圧縮応 力度 σ_{B No.1-n}を求めた。また,高強度せん断補 強筋のコンファインドコンクリートに対する 拘束効果の限界を考慮して, σ ω は普通強度 鉄筋の応力度を使用することとした。No. 1-nの 試験体をプレーンコンクリートのコンクリー ト強度の基準として求めた,最大荷重比 Pern./ Pcal.は、1.04~1.22となり安全側の評価となっ た。また、フープ形状について、フックの長 さ,重ね長さ、フックの折り曲げ角度、間隔 を変化させたことによる最大荷重比 Pern / Peal の傾向は特に認められなかった。かぶりコンク リートの無い試験体については,最大荷重比 Perp. / Pcal. が高い値となる場合(1.11~1.22)が 認められることから、コンファインドコンクリ ートとかぶりコンクリートの圧縮応力度の差 異について今後検討する必要があるものと考 える。

5. まとめ

フープ形状の異なる場所打ちコンクリー ト杭の中心圧縮実験を行い最大耐力について 検討した結果,本実験の範囲内で以下に示す 知見が得られた。

- フープのフックの長さを12dに同一として、 重ね長さを変化させても、最大荷重 P_{exp.}と P exp.後の下り勾配に差はさほど認められなかった。
- Richart らの実験式を適用して計算値 P_{cal}. を求める際、プレーンコンクリートの試験体 を圧縮強度の基準として求めた最大荷重比 P_{exp}./P_{cal}.は、安全側の評価となった。

参考文献

- 1) 高周波熱錬㈱:場所打ちコンクリート杭の せん断補強筋としてウルボンを使用する工 法設計指針・同解説,2004.4
- 6)崎野健治:コンファインドコンクリートの研究の現状、コンクリート工学、Vol. 30, No. 12, 1992. 12, pp. 5-12