雷撃損傷を有する CFRP サンドイッチ製風車ブレードの損傷と固有振動数の関係

日大生産工(院) ○呉 丹
日大生産工 邊 吾一,
昭電㈱ 曽根原 修

邊 吾一, 坂田 憲泰 曽根原 健夫

1. 緒 言

炭素繊維強化複合材料(Carbon Fiber Reinforced Plastics; CFRP)は従来の金属材料に比べて,軽量で 比剛性・比強度に優れている材料であり,現在では 航空宇宙分野の構造部材に多く使用されている.

近年では風力発電用ブレードの大型化に伴い従 来のガラス繊維強化複合材料(Glass Fiber Reinforced Plastics; GFRP)からCFRPへ移行されている¹⁾.し かし,CFRP 製ブレードは運用中に雹や鳥の衝突や 落雷などによって衝撃を受けることが予想される が,厚さ方向に繊維が無く衝撃負荷に弱いため,こ れらの衝撃負荷によって材料内部に表面から確認 できない層間はく離,樹脂割れ,繊維破断が生じる 可能性がある.さらに損傷した部分に曲げや圧縮負 荷が加わると層と層がはがれ,圧縮強度が低下し, 座屈や圧縮破壊が起こりやすくなる.そのため,内 部損傷を検査する代表的な非破壊検査方法として 超音波探傷試験,X線探傷試験がある.一方で,非 破壊検査手法の一つである加振実験の結果を用い て検討した研究事例もある²⁻⁴⁾.

本研究では CFRP 製ブレードの内部損傷をブレー ドの振動特性を用いて非破壊的に評価し、ブレード の残存強度を明らかにすることを目的とする.本報 告ではインパルス加振実験を用いて CFRP 製風車ブ レードの固有振動数と減衰比の測定を行い, FEM 解 析結果と比較した結果について報告する.

2. 実験方法

2.1 試験片

Fig.1に実験で用いたCFRP製風車ブレードを示す ⁵⁾. 本ブレードは, 平織り CF クロス (東邦テナック ス: W-3101 3K, 三菱レイヨン: TRK101M 12K)と, コア材(ウレタン)エポキシ樹脂を使用し VaRTM にて成形された翼長 2168.85mm, 最大翼弦長 483.81mm, ブレード中央翼厚 45.3mm となっている. 両者の繊維体積含有率は 60% で, 表面層の積層構成 は位置によって異なり、①では [3K((±45) / (0/90) / (0/90)) / 12K((±45) / (0/90) / (0/90) /(±45))], ②では $[3K((\pm 45) / (0/90) / (0/90)) / 12K(\pm 45)]_4$, 3 Ct $[3K((\pm 45) / (0/90) / (0/90))]_3 となっている. ①, ②,$ ③の表面層の板厚はそれぞれ 5.1mm, 9.44mm, 4.5mm で、コア材の厚さも位置によってそれぞれ異 なり①では最大 207.0mm, 最小 66.5mm, ②では最 大 66.5mm, 最小 43.3mm, ③では最大 43.3mm, 最 小 29.6mm となっている.

2.2 インパルス加振実験

CFRP 製風車ブレードの固有振動数,減衰比を測 定するためにインパルスハンマを用いた加振実験 を行った.実験では3本のブレードを用い,試験条 件はブレードの片側端部をボルトで固定した片持 ち状とし,インパルスハンマでブレードに入力波を 与え,2軸の加速度計によって応答振幅を測定した. 計測は測定誤差を小さくするために1つの応答点あ たり3回行った.Fig.2に加振点と加速度計の設置個 所を示すが,面内と面外のモードを確認するために 加振点はブレード固定部最上部から45°の位置に 固定し,加速度計の設置個所は翼長方向に200mm 間隔(中心部付近は100mm 間隔)で合計40点とし た.入力波と応答波はFFTアナライザー内で伝達関 数に変換し,その伝達関数から1次モードの固有振 動数を求めた.

2.3 実験結果

CFRP製ブレー ドの模擬雷撃実験前後でのインパ ルス加振実験の結果, Blade 1の模擬雷撃前の1次の 曲げモードの固有振動数が13.1Hzであったのに対し, 模擬雷撃後の固有振動数は大きく13.7Hzとなり, 模 擬雷撃実験前後での差は4.6%となった.2次と3次の 曲げモードについても, 模擬雷撃実験前後での固有 振動数の差はそれぞれ4.0%と5.4%となった.さらに, Blade2とBlade3においても模擬雷撃実験前後で, 固 有振動数の差は5%程度となったが, インパルス加振 実験では, 実施者を加振系の一部として行うため,

Non-Destructive Method of CFRP Wind Turbine Blade by using its Vibration Characteristics

Wu DAN, Goichi BEN, Kazuhiro SAKATA and Takeo SONEHARA

加振の良否が実施者の技能に依存する度合が他の方 法よりはるかに大きくなる⁵⁾. そのため、これらの 差はインパルス加振実験の測定誤差範囲内と考えら れる.また、 模擬雷撃実験前後で固有振動数がそれ ほど変わらなかったのは、本CFRP製ブレードに雷撃 による局部的な損傷が生じても、CFRP製ブレード全 体の剛性が模擬雷撃実験前とほとんど変化しなかっ たためと考えられる.

3. 模擬雷擊試験

CFRP 製風車ブレードに損傷を与えるために模擬 雷撃試験を行った. 模擬雷撃発生には, 雷インパル ス電流発生装置を用いた. 試験ではブレードの下 面側を上向きで両端部を木製の支持台に乗せ, ブレ ード中心部に電流を発生させる SUS 製の放電電極棒 を設置した. 放電電極棒先端とブレード間の距離が 2.0mm となるよう調整し, ブレード根元金属部と試 験棟の接地を繋げることでブレードを通過した印 加電流の導通経路を確保した.本試験では 20kA~ 30kA の範囲になるようにインダクタ・レジスタを 調整し雷撃した.

4.空中超音波探傷試験

模擬雷撃試験後の損傷の確認, ブレードの最大損 傷面積の算出のために空中超音波探傷試験を行っ た.探傷方法は非接触空中法で二探触子透過法とし. 探傷条件はプローブの周波数が 50kHz,走査ピッチ は 2.0mm.探傷感度 30~40Db とした.探傷結果は, 透過パルス高さが送信パルスの 40%以下を損傷と みなし,健全部と思われる個所を青色とし透過パル ス高さが小さくなるにつれて赤色に変化するよう にした.最大損傷面積はCスコープの投影面積をも とに色面積から損傷部分の最大損傷面積を求めた.

4.1 模擬雷撃試験と空中超音波探傷試験の結果比較

着雷点近傍を詳しく外観目視検査すると,繊維破 断及び樹脂が焼失した様子が確認できた.これは, 雷の発生による衝撃波及びその際に発生する高温 による樹脂溶解,蒸発の複合的な影響によって発生 するものと考えられる.

空中超音波探傷試験を行い、さらに詳しく損傷状 況を確認した.探傷結果を見ると、ブレード1、ブ レード2,ブレード3とも繊維破断を含む損傷は着 雷点近傍に集中していることが確認できた.また, 外観で観察された損傷箇所以外で透過パルス高さ がかなり低下する箇所が検出された.幅方向に透過 パルス高さがかなり低下する箇所は幅方向に連続 的に入っていたため、 雷の影響によるものと考えに くく、ウレタンコアの繋ぎ目であると考えられる. ブレードほぼ体調に渡ってパルス高さが低くなる 箇所が検出しており,これはブレードの端面の表面 形状の影響で超音波がまっすぐ通れないことによ る影響だと考えられ、この二つの透過パルス高さが 低下した部分は雷撃による損傷とは見なさなかっ た. そして, 外観で観察された損傷箇所を拡大した 結果、透過パルス高さ40%以下の範囲は実際の傷の 範囲より広い結果となり、雷撃試験によってブレー

ドの内部に損傷が広がっている可能性が考えられる.

5. 結 言

雷撃試験前と雷撃試験後の振動特性を比較すると, 模擬雷撃実験前後で固有振動数がそれほど変わらな かった.

外観で観察された損傷箇所以外で透過パルス高 さがかなり低下する箇所が検出され、幅方向に検出 された箇所がまっすぐな直線で断続的に続いてい たため、雷の影響が考えにくい、ウレタンの隙間の 可能性が大きいと考えられる。

ブレードほぼ体調に渡ってパルス高さが低くなる 箇所が検出しており、これはブレードの端面の表面 形状の影響で超音波がまっすぐ通れないことによ る影響だと考えられる.

外観で観察された損傷箇所を拡大した結果,透過パルス高さ 40%以下の範囲は外観で観察された損傷 箇所の範囲より広い結果となり,雷撃試験によって ブレードの内部に損傷が広がっている可能性が考 えられる.

謝 辞

末筆ながら CFRP 製風車ブレードを提供して頂いた(株)ジーエイチクラフトの皆様に厚く御礼申し上げます.

参考文献

- 1) 新藤健太郎,川節望,黒岩隆夫,田北勝彦,風力 発電装置用大型 FRP ブレードの製造技術,日本 船舶海洋工学会誌,(2009),pp.33-37.
- 高橋朋哉, 邊吾一, 長瀬尚樹:第1回日本複合 材料合同会議(JCCM)講演論文集, (2010), pp.577-579.
- 高橋朋哉, 呉丹, 長瀬尚樹, 邉吾一, 品川議夫: 第 35 回複合材料シンポジウム講演要旨集, (2010), pp.199-200.
- 宮内貴史,呉丹,坂田憲泰,邉吾一,品川議夫, 振動特性による CFRP 製風車ブレードの解析と 実験, 56th FRP CON-EX 2011 講演要旨集, pp.81-82.

5) 長松昭男:モード解析入門, コロナ社(2006), p293-323.

Fig.2 Impulse point and response points