
光学活性[MeCpRu(Prophos)Cl]錯体のCl⁻/I交換反応

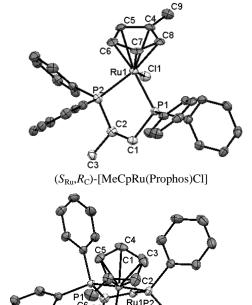
日大生産工(院) 〇宮原 千絵美 日大生産工 津野 孝 レーゲンスブルグ大 ヘンリ・ブルナー

1. 緒言

ハーフサンドイッチ型金属錯体 [CpRu(P-P')Hal] (Hal = Cl, I)は構造的にsp³炭素 の四面体構造と同様にとらえることができ,金 属核中心は光学活性となる. これら錯体は極性 溶媒中で容易にハロゲン化物イオンを解離し, 16電子不飽和[CpRu(P-P')]+中間体となる。この ような中間体は主に不斉触媒に利用されるが, より不斉誘起の高い触媒として機能させるに は[CpRu(P-P')]⁺の立体化学を解明しなければ ならない. 近年, Brunner と Tsunoらは [CpRu(P-P')][†]の立体化学を明らかにするため $(S_{Ru},R_C)/(R_{Ru},R_C)$ -[CpRu(Prophos)Cl]のハロゲン 交換反応とエピマー化反応に対する動力学的 検討を行い, Cl⁻が解離した[CpRu(Prophos)]⁺は もとの飽和錯体の立体化学を保持したピラミ ダル構造が準安定であることを報告した1,2).検 討された[CpRu(Prophos)Cl]はジアステレオマ 一混合物であり,真の反転に対する活性化エネ ルギーは決定されていない. Figure 1³⁾に示し た $k_2(k_2')$, $k_3(k_3')$ を決定するためには、純粋な ジアステレオマーを用いる必要がある. [MeCpRu(Prophos)Cl] は[CpRu(Prophos)Cl] と類 似したエネルギーダイアグラムを示すと考察 できる. 今回, 純粋なジアステレオマーである (S_{Ru},R_C) -[MeCpRu(Prophos)Cl $\succeq (R_{Ru},R_C)$ -[MeCp-Ru(Prophos)Cl]の単離に成功し、「イオンとの交 換反応について検討を行った.

Figure 1. Energy diagram for the epimerization of the complexes [CpRu(P-P')Hal].

2. 実験


[MeCpRu(Prophos)Cl] 錯 体 の 合 成 : [MeCpRu(PPh₃)₂Cl]と1当量の(R)-Prophos, [(R)-1,2-bis(diphenylphosphanyl)propane], を脱水ベンゼン中で18 h 加熱還流した. 反応溶液をセライトろ過後, エーテルで洗浄, 濃縮し, (S_{Ru} , R_C)/(R_{Ru} , R_C)-[MeCpRu(Prophos)Cl] (46:54)を得た(62%). トルエン/ヘキサンで析出した成分から, (S_{Ru} , R_C)-体過剰, (R_{Ru} , R_C)-体過剰の混合物が得られ, 更にそれらをトルエン/ヘキサンで再結晶を繰り返すことで純粋なジアステレオマーを得た.

[MeCpRu(Prophos)Cl]のCl/I配位子交換反応: NMRチューブに(R_{Ru} , R_{C})-[MeCpRu(Prophos)Cl] (10 mg), [Bu₄N]I (10 eq.), CDCl₃ (0.36 mL), メタノール (0.04 mL)を加え, Bruker 社製温度可変装置付きAvance-400NMRを用いて測定した. 31 P{ 1 H} NMRの経時変化のPPh₂の積分強度比

Cl⁻/I Exchange reaction of optically-active complexes [MeCpRu(Prophos)Cl]

Chiemi MIYAHARA, Takashi TSUNO and Henri BRUNNER

より速度定数kを決定し、活性化パラメータ ΔH^{\dagger} 、 ΔS^{\dagger} 、 ΔG^{\dagger} を求めた.

 (R_{Ru},R_{C}) -[MeCpRu(Prophos)Cl]

Figure 3. ORTEP drawing of (S_{Ru}, R_C) -[MeCpRu-(Prophos)Cl], (R_{Ru}, R_C) -[MeCpRu(Prophos)Cl], Hydrogen atoms are omitted for clarity.

3. 結果・考察

トルエン/ヘキサンの再結晶によって, 析出 成分よりジアステレオマー比96:4, 母液の濃 縮成分より22:78となる錯体の混合物を得た. 96:4の混合物の単結晶のX線構造解析を行っ た. この結晶の絶対配置は (S_{Ru},R_C) であること が明らかとなったが、興味深いことに、8%の (R_{Ru},R_{C}) -体を含む共結晶であった(Figure 1, **top**). さらに再結晶することで純粋な(S_{Ru} , R_C)-体を得た.一方、母液の濃縮残分を再結晶し、 純粋な(R_{Ru} , R_C)-体を得た. この化合物について もX線構造解析により絶対配置を決定した (Figure 1, bottom). 続いてこれら錯体のCI/I 交換反応について検討を行った. Table 1に (S_{Ru},R_C) -[MeCpRu(Prophos)Cl] \bigcirc 5% \rightarrow β / -ル/CDCI₃溶液中におけるCI/I⁻交換反応の速度 と活性化パラメータを示す. この反応において いずれの系も2つのヨウ化物錯体,

(R_{Ru},R_C)/(S_{Ru},R_C)-[MeCpRu(Prophos)I] の生成が 認められた. 交換反応速度は (S_{Ru},R_C)-[CpRu(Prophos)Cl]の速度よりも約1/9 遅い3). しかしながら、ヨウ化物錯体それぞれ の生成速度は、我々が期待した k_2 '、 k_3 'に相当 し、これらの値からk3'過程及びk3'過程の活性 化パラメータを決定した. これらの過程の活性 化エンタルピー ΔH^{\dagger} を比較すると,300 Kにお いて k_2 '過程より k_3 '過程が9 kJ/molエネルギー 的に高いことが明らかとなった.次に, (R_{Ru},R_C)-[MeCpRu(Prophos)Cl]のCl/I交換反応 について検討を行った. この錯体の300 Kにお いて交換速度は、(S_{Ru},R_C)-[MeCpRu(Prophos)Cl] のものよりも15倍速い $(k = 1.2 \times 10^{-3} \text{ min}^{-1})$. こ れら(R_{Ru},R_C)-[MeCpRu(Prophos)Cl]のCl/I交換 反応の速度並びに熱力学パラメータについて は講演会にて報告する.

Table 1. Cl⁻/I⁻ exchange reaction of (S_{Ru},R_C) -[MeCpRu-(Prophos)Cl] in 5% MeOH/CDCl₃ and activation parameters

Temp.	k_1	$\tau_{1/2}$	k_2	k_3
(K)	(min ⁻¹)	(h)	(min ⁻¹)	(min-1)
300	8.0×10^{-5}	144	7.5×10^{-4}	5.8×10^{-6}
308	2.2×10^{-4}	53	2.0×10^{-3}	1.8×10^{-5}
313	3.5×10^{-4}	34	3.2×10^{-3}	3.0×10^{-5}
323	8.8×10^{-4}	13	8.0×10^{-3}	8.1×10^{-5}
Activation enthalpy $\Delta H^{\ddagger}: k_2(300\text{K}) = 80\text{kJ/mol}$			$\Delta H^{\ddagger}: k_3(300\text{K}) = 89\text{kJ/mol}$	
Activation entropy $\Delta S^*_{+}: k_2(300 \text{K}) = -91 \text{J/mol K}$			$\Delta S^{\ddagger}: k_3(300\text{K}) = -81 \text{ J/mol K}$	
Gibbs free energy $\Delta G^{\ddagger}: k_2(300\text{K}) = 107 \text{ kJ/mol}$			$\Delta G^{\ddagger}: k_3(300\text{K}) = 113 \text{ kJ/mol}$	
	-		•	

4. 謝辞

X線単結晶構造解析を行っていただいた、レーゲンスブルグ大学M. Bodensteiner博士に感謝致します.

5. 参考文献

1) Brunner, H.; Muschiol, M.; Tsuno, T.; Takahashi, T.; Zabel, M. *Organometallics* **2010**, 29, 428. 2) Brunner, H.; Tsuno, T. *Acc. Chem. Res.* **2009**, 24, 1501. 3) Brunner, H.; Muschiol, M.; Tsuno, T.; Takahashi, T.; Zabel, M. *Organometallics* **2008**, 27, 3514.