シュミットハンマーを用いたポリアセタールの探傷検査と有効範囲

日大生産工(院) ○佐藤亮太 日大生産工 酒井哲也 日大生産工 矢野耕也

1. 緒言

化学装置における配管内部やタンク内 側、さらに材料内部などの外部からは確認 できない損傷や腐食を放置した場合、致命 的なダメージにつながる危険性があり、実 際に損傷による内容物の漏洩による事故が 発生している。これらの設備および装置な どの内側を直接検査する方法は稼働中の装 置を止めるなど、業務に支障を来たすため、 外側から傷の箇所の特定や腐食などについ て、対象物にダメージを与えない非破壊検 査を行う必要がある。そこで、今回はシュ ミットハンマーを用い、有機材料を対象と した探傷試験の検討を行うことにした。

2. 目的

非破壊検査には様々な種類があり効果を あげているが¹⁾ 有機材料を用いた装置につ いては、あまり実施されていない。これは 材料の性質に起因する問題のほかに、超音 波などの非破壊検査装置は高価であり、か つ測定範囲も限られているためである。衝 撃試験はフィルム、紙の巻圧測定には用い られているが、有機材料への応用例は無い。 そこで、本研究では比較的安価で手軽に行 えるシュミットハンマーを用い、有機材料 の劣化、特に探傷検知を目的とした非破壊 検査の有効性について検討した。

3. 実験方法

3.1 使用機器および方法

シュミットハンマーとは、土木・建築分 野においてコンクリートの圧縮強度を測定 するために用いられている装置である。こ の測定原理はコンクリートに打撃を与え、 部材の反発強度を測定する反発硬度法の一 つであり、対象物に損傷を与えず簡易的に 検査が可能な非破壊検査手法である²⁾。測定 はシュミットハンマーL型、N型(PROCEQ社 製)の2種類を用いた。測定方法は先端部プ ランジャーを測定部に垂直に押し付け、静 かに力を加え、ある一定の力を超えると衝 撃が加わる仕組みになっている。測定を行 った際、衝撃後のスケールに表示された値が測 定値となる。圧縮強度は10-70 (N/mm²) で衝撃 エネルギーはL型が0.75Nm、N型が2.207Nmであ る。

3.2 使用材料および試験片

試験片寸法は250×150mm、500×500mmの2種 類。厚さは共に20mmのポリアセタール(POM) を使用した。また、この平面部を25×25mmに区 切り、この範囲の中心を測定点とした。さらに、 探傷のモデル試験片としほぼ中心の位置に、直 径8mmのエンドミルによるフライス加工で欠陥 の深さ5、10、15、18mmとなるようにした試験 片を使用した。欠陥の直径との関係性を見る為 に直径5,3mmのエンドミルで欠陥深さを5mmで 統一したものも使用した。実験は20℃の環境下 で測定を行った。

3.3 測定方法

測定時の試験片は強固な卓上台の上に試験 片を配置し試験を行った。一箇所の測定点に対 し、測定は3回行い、その平均値をシュミット ハンマーの測定値とした。また、欠陥を有する 試験片については加工面の反対側から測定を 行った。

図1 シュミットハンマー測定値: POM平板 欠陥なし

4. 実験結果

図1に欠陥の無い健全な試験片のシュミット ハンマーの測定値を示す。多少のバラツキはあ るものの、端面は数値が上がる傾向が出るがほ ぼ一定の数値を示した。

The effective range of flaw inspection of polyacetal by Schmidt hammer testing

Ryota SATO, Tetsuya SAKAI and Koya YANO

6-12

次に中心部に直径8mm深さ10mmの欠陥を作 製した試験片についてシュミットハンマーの 測定値を図2に示す。欠陥上部近辺における4 ブロック(座標C5、C6、D5、D6)に向かって 測定値が最大30程度低くなっていることか ら、欠陥の存在を反映した結果が現れている ものと考えられる。

図2 シュミットハンマー測定値: POM平板: 中心部に深さ10mmの欠陥を作製したもの

次に直径を8mm一定とし、5、10、15、18mm と4種類の深さで欠陥を作製した試験片につ いて検討した結果、4種類とも深さに関わらず 欠陥に近づくにつれて、測定値が低下してい くことがL型、N型の両方で確認できた。これ により探傷検査としての使用および有効性が 確認された。

5. 検査有効範囲の算出

図3は健全な試験片と直径8mm一定で深さを 変化させた試験片、さらに500×500mmの試験 片に直径8mm欠陥深さ10mmについて測定した 結果である。なお、座標C1~C10のみ抽出し加 工した部分を中心(0mm)とし、プロットした ものである。500×500mmの試験片についても 250×150mmの試験片と同様の位置でシュミッ トハンマーの値が変化していることがわか る。したがって試験片のサイズは影響しない ことが確認された。

次に有効範囲の算出方法は試験片の大き さ、欠陥の深さに関わらず欠陥部に向けて測 定値は低下していくことから最も測定値が低 下した箇所を基準に、そこから端面手前の座

表1	欠陥深さ	と検査有効論	範囲の関係
~ ~ -	2 ST 10 P P 1 S		

X1 八阳床CC候鱼自为艳西**房床			
欠陥深さ	欠陥部 R 値	有効範囲 (半径:mm)	
5mm	20	181	
10mm	21.5	131	
15mm	22.5	141	
18mm	25	111	

図3 欠陥深さが異なるシュミットハンマー値

標までの傾きを算出し、欠陥部から健全な試 験片の平均値になるまでの距離から有効範囲 を算出した(表1)。

欠陥部R値で比較したところ欠陥深さが大 きくなるにつれて値が大きくなる傾向があ る。

これはPOMがコンクリートや金属材料に比べ、 弾性率が低い材料特性を有しているため、欠 陥による材料の減肉と反発硬度法という原理 が影響し、このような結果になったと考えら れる。

今回の実験条件では欠陥を中心に最大で半 径180mm、最小で110mmの範囲で欠陥の検知が 可能であった。しかし検査有効範囲は欠陥R 値の傾向と異なり、欠陥深さが大きくになる につれて、小さくなっている。これは前述し たPOMの特性が影響しているものと考えられ る。

6. 結言

シュミットハンマーにより欠陥の検知が可 能であり、その範囲は超音波試験などに比べ 検査有効範囲が広いため、予備検査としての 利用が期待できる。これにより大型の貯蔵用 タンクなどの定期的なメンテナンスに衝撃を 利用した簡易的な検査への適用が期待でき る。

〈参考文献〉

- 1)松嶋正道,総説 非破壊検査;強化プラスチック,48,[8],pp.3-5(2002)
- 2)社団法人日本材料試験協会;シュミットハンマーによる実施コンクリートの圧縮強度判定方法指針,材料試験,7,[59], pp.40-44(1958)