[Cp(PN_{Ment})Ni(PPh₃)]PF₆および[{Cp(PN_{Ment})Ni}₂(Dppe)]2PF₆の合成とそれらの立体化学

日大生産工(院) ○杉山 悠 日大生産工 津野 孝 レーゲンスブルグ大 ブルナー・ヘンリ

1. 緒言

Cp環とP配位子とをアルキル鎖で繋いだ 配位子は,通常フルベンまたはスピロアネ レート化シクロペンタジエンへの求核置換 反応によって合成され,金属(M)と錯化さ せた場合,架橋錯体を形成する.この架橋 錯体は,アルキル側鎖によりキレート環を 形成しCp環の自由な回転を抑制するため, 架橋鎖を持たない錯体と比べ安定である¹⁾.

Hussainら²⁾は、 η^5 : κ^1 -ジ-tert-ブチルホスフ アニル配位子とNiCl₂との反応から、 [Cp('Bu₂P)NiCl]を合成し、この錯体とフェニ ルアセチレンまたは4-メチルフェニルアセ チレンとを交換反応させることで、安定な Ni-C結合を持つ錯体を合成した.また、 Hussainらは、[Cp('Bu₂P)NiCl]のアルキン部 位にテトラシアノエテン(TCNE)を導入した 際、アルキル架橋鎖によりCp-M軸の回転を なくすことで、安定なコンフォメーション の錯体を合成している.

演者らは、アルキル架橋型三座配位子 Cp(PN_{Ment})³⁾ と NiCl₂ と の 反 応 か ら [Cp(PN_{Ment})NiCl] (1)を合成し、 ClとPPh₃と の交換反応から [Cp(PN_{Ment})NiPPh₃]PF₆ (2) の合成に成功した. さらに、Dppeと交換反 応 さ せ た と こ ろ 二 核 錯 体 [{Cp(PN_{Ment})Ni₂}(Dppe)]2PF₆ (3)の合成にも 成功した. 今回、錯体2, 3の合成とそれらの 立体化学について報告する.

2. 実験

[Cp(PN_{Ment})Ni(PPh₃)]PF₆ (2)の合成:1と PPh₃, NH₄PF₆をエタノール/THF (*v*:*v* = 1:1) 中,室温下で3 h反応させ,濃縮残分をヘキ サン,ジエチルエーテルで洗浄後 (67%), 塩化メチレン/トルエン/ヘキサン中-27 ℃で 再結晶し,単結晶を得た.

[{Cp(PN_{Ment})Ni}₂(Dppe)]2PF₆ (3)の合成:1 とDppe, NH₄PF₆をエタノール/THF (v:v = 1: 1)中,室温下で3 h反応させた.濃縮残分を セライトろ過後,ヘキサンで洗浄し, [{Cp(PN_{Ment})Ni}₂(Dppe)]2PF₆ (3)を得た (58%).塩化メチレン/エタノール/ペンタン 中室温下で再結晶し,単結晶を得た.

3. 結果·考察

Scheme.1に1-3の合成経路を示す.

[Cp(PN_{Ment})Ni(PPh₃)]PF₆ (2)の合成と構造解 析:1とPPh₃との配位子交換反応により、深 緑色の2を得た. $2\sigma^{31}$ P NMRスペクトルは、 2つの非等価なリンの二重線 69.75 ppm (${}^{2}J_{P-P} = 35.6$ Hz, PPh₂), 37.02 ppm (${}^{2}J_{P-P} = 35.6$ Hz, PPh₃)のシグナルを示した.

単結晶X線構造解析結果をFig.1に示す.2 の二面体角P1-Ni1-P2-Cp(centroid)は,175.04 (°)となり,[Cp(P'Bu₂)NiC=CPh(*p*-Me)]の二面 体角C16-Ni1-P1-Cp(centroid) = 178.56 (°)²と 比べ若干歪んだ構造をとっているが,ほぼ平 面構造であることが明らかとなった.

Synthesis and Stereochemistry of $[Cp(PN_{Ment})Ni(PPh_3)]PF_6$ and $[{Cp(PN_{Ment})Ni}_2(Dppe)]2PF_6$

Yutaka SUGIYAMA, Takashi TSUNO and Henri BRUNNER

ピリジル基は、ダングリング状態で存在していることを示す. ピリジル基のNは、分子内・分子間での水素結合は認められないのに対し、メントキシル基のOは分子間の水素結合が認められた.

[{Cp(PN_{Ment})Ni}₂(Dppe)]2PF₆の合成と構造 解析: 1とDppeとの配位子交換反応により、 黄緑色の3を得た. 30^{31} P NMRスペクトルよ り、二つの非等価なリンのシグナル δ = 71.48 ppm (d, ²J_{P-P} = 37.9 Hz, PN_{Ment}-PPh₂), 32.4 ppm (br, ²J_{P-P} = 40.0 Hz, ³J_{P-P} = 13.2 Hz, ⁵J_{P-P} = 7.0 Hz, Dppe-PPh₂)が観測された.

ESI-MSは, $m/z=794 \[mm]{C}[M^{2+}], m/z=993 \[mm]{C}[M^{2+}-Cp(PN_{Ment})Ni^+]を示した. さらに, <math>m/z=1734$ が観測された. 同位体分布は, $[M^{2+}+PF_6^-]^+$ の同位体組織分布に一致し (Fig. 2), クラスターイオンとしてカチオン 中にPF6を1つ取り込んだイオンピークであることを示唆する.

3は予備的なX線構造解析により二核錯体 であることを確認した.

Scheme. 1. Preparation of 1-3.

Fig. 1. Molecular structure of analysis of **2**. Hydrogen atoms and PF₆ are omitted for clarity. Selected bond length (Å), bond angles (°), and torsion angles (°): C1-C2 1.47(2), C1-C5 1.44(2), C2-C3 1.40(2), C3-C4 1.41(2), C4-C5 1.37(2), Ni1-C1 2.05(1), Ni1-C2 2.13(1), Ni1-C3 2.13(1), Ni1-C4 2.08(1), Ni1-C5 2.13(1), Ni1-P1 2.15(3), Ni1-P2 2.16(3); P2-Ni1-P1 105.0(1), C1-C6-C7 106.5(9), Ni1-P1-C7 103.2(4); C16-Ni1-P1-Cp(centroid) 178.56.

Fig. 2. Spectrum of 3 in the range of m/z 1730-1745.

4. 参考文献

 Butenchön, H. *Chem. Rev.* **2000**, *100*, 1527.
Hussain, M.; Albert, D.; Wartchow, R.; Butenchön, H. *Chem. Asian J.* **2007**, *2*, 782.
Tsuno, T.; Brunner, H.; Katano, S.; Kinjo, N.; Zabel, M. *J. Organomet. Chem.* **2006**, *691*, 2739.