麹菌チロシナーゼによるビスフェノール誘導体のキノン酸化における 至適条件の決定とキトサンを利用した除去

日大生産工(院) 〇互 豪月桂冠(株)総研 秦 洋二・塩田 和功日大生産工 柏田 歩・松田 清美・山田 和典

【緒論】

パソコン部品に使用されている特殊エポキシ やポリカーボネート樹脂の原料であるビスフェ ノール誘導体は2つのフェノール基を持ち,ビ スフェノール A(BPA)と構造が類似することから 内分泌かく乱作用が懸念されている.特殊樹脂 の分解や溶出によって環境中に流出すると生体 内に取り込まれることで発癌,突然変異などを 引き起こし,生態系への影響が考えられる.

ビスフェノール誘導体を除去する方法として 活性炭吸着法、オゾン酸化法などの化学的処理 法や活性汚泥法などの生物的処理法などが用い られるが、より短時間で高効率な方法として酵 素反応を利用した除去に注目した。これまで酸 化還元酵素の一種であるチロシナーゼやペルオ キシターゼを用いた BPA およびビスフェノール 誘導体のキノン酸化について報告されている. また, 麹菌由来のチロシナーゼは種々のアルキ ルフェノールをキノン酸化することができ、酵 素反応により形成したキノンはアミノ基と高く 反応するため、キトサンビーズへのキノン吸着 によって効果的に除去することができる¹⁾. しか し、麹菌チロシナーゼによるビスフェノール誘 導体の処理に関する報告例が少なく, 同種の酵 素でも由来が異なれば基質特異性が異なること から本研究では麹菌チロシナーゼによってビス フェノール誘導体をキノン酸化させる際の至適 条件を決定した後、キトサンビーズへのキノン 吸着による水溶液中からのビスフェノール誘導 体の除去を検討し、キトサンの形体の違いによ るビスフェノール誘導体の除去を比較した.

【実験】

<試料および溶液調整>

本研究では月桂冠(株)より提供された麹菌由 来のチロシナーゼを使用し,その比活性は 342 U/mgであった.リン酸緩衝溶液(0.01M)を用いて ビスフェノール誘導体およびチロシナーゼ溶液 を調製した.キトサンビーズ(粒径:70~200 µm, 比表面積:70~100m²/g)は富士紡績(株)から購入 し,緩衝溶液中に保存した.ビスフェノール誘 導体は市販品をそのまま使用した. <酵素反応によるキノン酸化>

ビスフェノール誘導体溶液に麹菌チロシナー ゼを加えて酵素反応を開始させ,所定時間ごと に反応溶液の UV-visible スペクトル(190~600 nm)を測定した.pH,温度,酵素濃度の諸条件を 変化させてビスフェノール誘導体のキノン酸化 における至適条件を決定し,さらにキトサンビ ーズを加えた除去実験を行った.

<HPLC 法による転化率の測定>

所定時間ごとに反応溶液から採取した溶液を 80℃の恒温槽中に数分間浸して酵素の活性を失 活させた後,マイクロシリンジで溶液 20mm³を HPLCへ注入した.GLサイエンス(株)製の Inertsil ODS-3 カラムを用いてアセトニトリル水溶液を 流速 1.0cm³/min で送液し,保持時間 7~8 分での ピーク面積から転化率を求めた.

【結果および考察】

pH6.0, 30°C と酵素濃度 100U/cm³で種々のビ スフェノール誘導体のキノン酸化における結果 を表1にまとめた. ビスフェノール C(BPC), ビ スフェノール E(BPE), ビスフェノール F(BPF), ビスフェノール O(BPO), ビスフェノール S(BPS) とビスフェノール T(BPT)は麹菌チロシナーゼに よって pH6.0, 30°C でキノン酸化され,転化率 は反応時間とともに上昇した. ペルオキシダー ゼやマッシュルームチロシナーゼによりビスフ ェノール誘導体を処理するには過酸化水素 (H2O2)の添加が必要であったが,麹菌チロシナー ゼでは H2O2 不在下で効果的にキノン酸化が進行 した. ビスフェノール誘導体の中で BPE, BPF Table1 Tyrosinase -catalyzed quinoneoxidationof

bisphenolderivativesatpH6.0and30°C.

	Initial	Tyrosinase		Conversion
Bisphenol derivatives	conc.	conc.	Conversion %	time
	(mM)	(U/cm ³)		(hr)
bisphenol A (BPA)	0.30	100	no reaction	
bisphenol B (BPB)	0.30	100	no reaction	
bisphenol C (BPC)	0.05	100	26.6	3
bisphenol E (BPE)	0.30	100	100	2
bisphenol F (BPF)	0.30	100	97.3	5
bisphenol O (BPO)	0.30	100	33.7	5
bisphenol S (BPS)	0.30	100	8.6	3
bisphenol T (BPT)	0.30	100	7.4	3
bisphenol Z (BPZ)	0.02	100	no reaction	

Determination of Optimum Conditions for Quinone Oxidation of Bisphenol D erivatives by Aspergillusoryzae Tyrosinase and Their Removal with Chitosan

SuguruTAGAI,AyumiKASHIWADA,KiyomiMATSUDA,Kazu noriYAMADA, YoujiHATAandKazunoriSHIOTA および BPO は高い転化率を示すことからキノン 酸化における酵素濃度を決定した. BPE と BPF は酵素反応速度が速く,処理時間が短いことか ら酵素濃度を BPE で 40U/cm³, BPF で 30U/cm³ まで低下できた.一方 BPO は酵素反応速度が遅 く,処理時間が長いことから酵素濃度を 300 U/cm³まで上昇させた.

次に pH6.0, 30℃ でキトサンビーズの添加に おけるキノン吸着による除去を BPE, BPF と BPO に対して検討した. BPE を対象にキトサンビー ズの添加による吸光度と転化率の変化を図1に 示す.キトサンビーズの存在下でチロシナーゼ を添加すると不在下に比べ BPE のキノン誘導体 への転化率は上昇し、キノン形成を示す波長の 吸光度の上昇は抑えられた.これは酵素反応に より形成されたキノンがキトサンビーズへ化学 的に吸着することで溶液中のキノン濃度が低下 し,反応速度が上昇したことを示す²⁾. さらに形 成したキノンによる酵素反応の阻害をキトサン ビーズとの吸着により減少させたことでキノン 酸化が進行したと考えられる.反応時間3時間 において転化率が100%,吸光度がゼロを示した ことから溶液中の BPE がキノン酸化されてキノ ン誘導体となり、キトサンビーズと効果的にキ ノン吸着が起こることで BPE を完全に除去でき たといえる. また, キトサン溶液とチロシナー ゼを加えた均一溶液系やキトサン粉末(平均粒 径:70~100µm)を分散させた不均一系では、キ トサンビーズを用いたほどの除去率が得られな かったことから、不均一系でのキトサンビーズ への吸着と高い比表面積が除去率の向上に必要 であることがわかり,本方法は短時間かつ高効 率であることが明らかになった.

BPF と BPO の除去における結果を表 2 にまと めた. BPF は表 2 に示すように酵素濃度 30U/cm³ で完全に除去でき,さらに至適条件である pH5.0 と 35℃ では除去に必要な酵素濃度を 15U/cm³ま で減少できた.また BPO は BPE と BPF に比べ

Figure 1 Removal of BPE through tyrosinasecatalyzed quinone oxidation and quinone adsorption on chitosan beads in the absence $(\bigcirc, \bigtriangleup)$ and presence of chitosan beads of 0.20 $(\bigcirc, \bigtriangleup)$ cm³/cm³ atpH6.0 and 30 °C.

Table 2 Removal of BPE, BPF, and BPO by the
combined use of quinone oxidation and subsequent
quinone adsorption on chitosan beads at pH 6.0 and
 $30^{\circ}C$

Bisphenol derivatives	Tyrosinase conc. (U/cm ³)	Chitosan beads (cm ³ /cm ³)	Removal %	Removal time (hr)
BPE	40	0.10	97.9	3
	40	0.20	100	2.5
BPF	20	0.10	74.0	5
	30	0.10	100	2/3
BPO	300	0.10	99.6	6
	300	0.20	100	6

酵素反応速度が遅いことから酵素反応を阻害す るキノンを吸着するためにキトサンビーズ量 0.20cm³/cm³ に増加させることで完全に除去でき た. 今後, BPO に対しても至適 pH と温度を個別 に検討することで完全除去に必要な酵素濃度を 減少させる予定である.

【結論】

麹菌チロシナーゼによって BPE をキノン酸化 させる際の至適 pH と温度はそれぞれ 6.0 と 30℃ となり、この条件を他のビスフェノール誘導体 にも応用した結果, BPC, BPE, BPF, BPO, BPS および BPT に効果的であることがわかった.特 に H2O2 不在下で麹菌チロシナーゼによるビスフ ェノール誘導体のキノン酸化が進行することは ペルオキシダーゼやマッシュルームチロシナー ゼにはない特徴である.高い転化率を示したBPE, BPFと BPO に対しては至適酵素濃度を検討し, それぞれ 40U/cm³, 30U/cm³ と 300U/cm³ となった. さらにキトサンビーズを添加することで酵素の 反応性が高まり、キノン吸着により溶液中から BPE, BPF および BPO を完全に除去できること を明らかにした.また,形成したキノンが化学 吸着し、キノンの濃度低下によりキノン酸化が 促進される不均一系での処理が、キトサン溶液 を用いた均一系での処理よりも短時間で効果的 に処理できた. さらに不均一系での除去では多 孔質で比表面積の大きいキトサンビーズを用い る本方法が BPE を除去するのに最も有用である ことが明らかになった. 今後, BPC, BPO, BPS と BPT に対して至適条件を決定することで除去 時間の短縮と除去効率の向上を検討する予定で ある.

【参考文献】

- 1) K. Yamada, T. Tamura, Y. Azaki, A. Kashiwada, Y. Hata, K. Higashida, Y. Nakamura., *J. Polym. Environ.*, **17**,95(2009).
- M. Suzuki, T. Sugiyama, E. Musashi, Y. Kobiyama, A. Kashiwada, K. Matsuda, K. Yamada, *J.Appl.Polym.Sci* ., **118**,721(2010).