高炉スラグ微粉末を内割混合したコンクリートの乾燥に伴う表層から

内部にわたる細孔構造の不均質性

日本生産工(院)	○三浦彰吾	日大生産工	湯浅	昇
元日大生産工	笠井芳夫			

1. はじめに

産業副産物である高炉スラグ微粉末は長期 強度が大きく、アルカリ骨材反応の抑制効果や 水、学物質に対する耐久性が高いなどの特性が ある。2010年には製造開始100年を迎え、累 計では4億トンも使用されており、古くからコ ンクリート用混和材料として使われてきた¹⁾。

特に近年では、資源の有効利用や CO₂ 排出 量が普通ポルトランドセメントに比べ少ない などの環境問題の観点から高炉スラグ微粉末 の使用量は増加する傾向にある。京都議定書目 標達成計画でも、CO₂削減を目指し高炉セメン トの使用拡大が織り込まれている。日本だけで も、年間 400 万トンの CO₂削減に貢献してい るとされる。

高炉スラグ微粉末を用いたコンクリートは、普 通ポルトランドセメントを用いたコンクリート に比し初期の水和反応が遅く、十分な湿潤養生を 行うことが重要である。

本研究では、高炉スラ グ微粉末を用いたコン クリートの表層から内 部にわたる不均質性に ついて、高炉スラグ微粉 末の置換率、表層からの 距離及び乾燥開始材齢 の違いについて検討を行うことを目的とする。

2. 実験概要

2.1 使用材料、調合及び打ち込み

研究用ポルトランドセメントに対して、高炉 スラグ微粉末を内割混合した高炉セメント、大 井川水系川砂(表乾比重:2.62、粗粒率:2.83)、 大井川水系川砂利(表乾比重:2.66、粗粒率: 6.96)及び化学混和剤(No.70及び303A)を使用 し、表-1に示す調合表に基づき、水セメント 比 60%のコンクリートを練り混ぜた。実験は 壁等の鉛直部材を想定したもので、試験体は 10×10×40cmの型枠を用いて作製した。

2.2 乾燥 (養生) 条件

打ち込み後、試験体側面(10×10cm 面)にはビ ニールシートを張り付け、所定の乾燥開始材齢 においてビニールシートを剥がし、乾燥をさせ た。また、試験体は温度 20℃、相対湿度 60%、 ほぼ無風の恒温恒湿室内に静置した。

表-1 調合表及びフレッシュ性状

																1001石市朳
W/C	置換率	細骨材率	単位水量	研究用セ	高炉スラ	細骨材	11 문 차	No 70	3034*	スランプ値	空気量	編り追	圧縮強度(N/mm ²)			
(%)	(%) (%)	^{単位小量} (kg/m ³) メント (kg/m ³)	メント (kg/m ³)	グ微粉末 (kg/m ³)	(kg/m³)	³) (kg/m ³)	(g/m ³)	(g/m³)	m ³) (cm)	<u>エズ</u> 重 (%)	(°C)	材齢1日	材齡3日	材齢7日	材齡28日	
60	0	47.2	180	300	0	841	955	750	1800	17.0	4.0	21.0	5.6	16.4	20.4	28.7
60	70	47.2	180	90	210	833	946	750	3856	19.0	4.0	22.0	1.8	7.0	13.5	23.8

Inhomogeneous Distribution of Porosity from the Surface Layer to Internal Parts of Dried Concrete using Blast Furnace Slag

Syogo MIURA, Noboru YUASA and Yoshio KASAI

4-5

2.3 試料作製及び細孔構造の測定

細孔構造の試料は、材齢 28 日目にそれぞれ の試験体を乾燥面から図-1に示す位置で切断 し、2.5~5.0mmの粒度に調整した後、アセト ン処理及び D-dry 処理を行って作製した。この 試料を用いて、文献 2)と同様に塩酸法による 溶解率及び結合水率の測定、水銀圧入法による 細孔構造の測定を行った。

3. 実験結果及び考察

3.1 乾燥開始材齢の違いによる細孔径分布

図-2 は、高炉スラグ微粉末置換率 70%のコ ンクリートについて、図-3 は、高炉スラグ微 粉末置換率 0%のコンクリートについて、表層 からの層別に、乾燥開始材齢による細孔径分布 の相違を示したものである。

置換率 0%のコンクリートに比べ置換率 70%のコンクリートは、細孔径が粗大になり、 100~1000nm の細孔径が増加することが確認 できる。

表層から距離 0~1cm では、高炉スラグ微粉 末置換率 70%のコンクリートは、乾燥の影響 により粗大な細孔が残った。これは乾燥開始が 早い程顕著になるが、表層からの距離 19.5~ 20.5cm では乾燥開始材齢の違いによる差はあ まりみられなかった。

3.2 表層からの距離と細孔径分布

図-4 は、高炉スラグ微粉末置換率 70%のコ ンクリートについて、図-5 は、高炉スラグ微 粉末置換率 0%のコンクリートについて、乾燥 開始材齢ごとに、表層から内部にわたる細孔径 分布の相違を示したものである。

表層から内部に進むにつれ細孔量のピーク が粗大な径から小さな径に移行し、表層からの 距離が 4.5~5.5cm では細孔径が小さくなって

乾燥開始材齢(日)

1日 - - 3日 …… 7日

図-6 は細孔径分布におい て、乾燥を受けた場合の細孔 径分布の増減を検討するた め、無乾燥のコンクリートに

対する乾燥コンクリートの相対細孔径分布(乾 燥コンクリートの有効細孔量---無乾燥コンク リートの有効細孔量)を示したものである。

乾燥を受けたコンクリートでは、無乾燥の コンクリートに比べ、細孔半径が 10nm~ 560nmの細孔量が増加しており、乾燥開始が早 いほど無乾燥との差がみられる。置換率70% のコンクリートは 320nm~1000nm にピークが (表層 0~1cm、基準:無乾燥)

図−6 乾燥により増減する細孔径分布

-5

顕著にみられる。

3.4 総有効細孔量の深さ方向の分布

図-7 は高炉スラグ微粉末の置換率ごとに、 表層からの距離と総有効細孔量の関係を示し たものである。

乾燥開始材齢(日)

1日 - - 3日 …… 7日

乾燥開始が早いほど、乾燥による影響が内部 にもみられた。しかし、高炉スラグ微粉末置 換率の違いはあまり確認出来なかった。

3.5 表層からの距離とメ ディアン半径

図-8 は表層から内部にわ たるメディアン半径の相違 を示したものである。

表層部において、乾燥を 受けたコンクリートは、無 乾燥のコンクリートに比べ メディアン半径が大きくな る傾向にあり、置換率の高

いコンクリートは内部にまで乾燥による影響 がみられることが確認できる。

3.6 乾燥開始材齢の違いによるメディアン半径

図-9は、乾燥開始材齢の遅れに伴う高炉スラ グ微粉末の違いによるメディアン半径の減少を 示したものである。

表層部では、高炉スラグ微粉末置換率0%に 比べ、高炉スラグ微粉末の添加によりメディア ン半径がより大きくなる傾向にある。

4. まとめ

本研究は、高炉スラグ微粉末置換率の違いが乾 燥に伴う細孔構造の不均質性に及ぼす影響につ いて検討したものである。結果は次の通りである。 (1) 高炉スラグ微粉末を添加したコンクリートに ついて、乾燥開始が早いほど、また、表層ほ

ど、乾燥の影響により粗大な細孔径が残るこ とを確認した。

(2)高炉スラグ微粉末を添加したコンクリート は、乾燥によりメディアン半径が大きくな りやすくなることを確認した。

謝辞 筆者の一人である日本大学名誉教授笠井 芳夫先生は、本論文の執筆中である平成23年10 月18日に他界された。先生のご尽力に感謝する とともに、ご冥福をお祈り致します。

参考文献

1) 鐵鋼スラグ協会:高炉セメント百年史、pp.2-16、2010 2) 湯浅昇、笠井芳夫、松井勇: 乾燥を受けたコンクリート の表層から内部にわたる含水率、細孔構造の不均質性、 日本建築学会構造系論文集、第509号、pp9-16,1998

図-8 表層からの距離とメディアン半径

メディアン半径(表層 0~1cm)