簡易な塩化物イオン量測定方法の開発 -ドリル径およびコア径を変えた場合-

日大生産工(院)	○美畄町	雅弘	日大生産工	湯浅	昇
元日大生産工	笠井	芳夫	琉球大学	山田	義智

1.はじめに

海岸地域に建造されたコンクリート構造 物では、海風によって運ばれる飛来塩分な どによる鉄筋の腐食や、それに伴うコンク リートの表面剥離など、塩害による劣化問 題とされ、さらなる研究、維持保全上の対 策が必要である。

硬化コンクリート中の塩化物イオンを測 定していく方法は、JIS A 1154 や JCI 法な どといった方法がある。これらの試験方法 は、分析試料の採取・調整や試験方法が複 雑で、多くの時間を要するため試験結果を 求めるのに多くの時間と手間がかかってし まう。また、飛来塩分などの影響を受けた 実構造物の塩害被害を調査する方法として、 既往の研究1)で提案されたドリル削孔粉を 全量採取する方法や JIS A 1107「コンクリ ートからのコアの採取方法及び圧縮強度試 験方法」に準じコアを採取する方法がある。

表-1	コンク	リー	トの使用材料
-----	-----	----	--------

P社製No.70、

60

セメント 普通ポルトラ

細骨材

粗骨材

混和剤

W/C(%)

しかしドリル削孔粉を用いた場合、既往 の研究¹⁾により、コアは骨材に関係なく採 取が可能だが、ドリルの刃は、塩化物イオ ンの浸透しやすいセメントペースト部に沿 って削る傾向があるため、ドリルとコアに おいて塩化物イオン量に差が生じる²⁾。

そこで本報告は、塩分浸漬乾燥5サイク ルの結果に基づき、ドリル径とコア径を変 えた場合の全塩化物イオン量測定に及ぼす 影響を検討し、さらに標準サイズであるコ ア径100mmよりコアおよびドリルにおいて 小さい径で全塩化物イオン量の測定方法を 検討するものである。

2. 実験概要

2-1.供試体の作製

表−1にコンクリートの使用材料、**表−2**に 促進用供試体の本数、表-3に調合表を示し たものである。コンクリート構造物の壁を 模擬した 300×300×150 mmの鋼製型枠を使 用した。

80 表−2 促進用試験体本数 ドセメント(ρ=3.16) サイクル W/C=60% 形状および寸法(mm) W/C=80% <井川産砂(p=2.</p> 62 5 3 大井川産砂利(ρ=2.66) 3 $300 \times 300 \times 150$ 10 3 <u>習志野市水道水(</u>ρ=1.00) 3 P社 製303A 20 3

水セメント比	粗骨材の最 大寸法	細骨材率	単位水量	i	絶対容積 (l/m)			質量 (kg/m³)		混和剤 使用量	スランプ	空気量
(70)	(mm)	(70)	(Ng/111)	セメント	細骨材	粗骨材	セメント	細骨材	粗骨材	(g/m^3)	(GIII)	(70)
60	25	47.5	185	97	319	353	308	836	939	2.76	21.0	4.5
80	25	47.4	185	73	330	367	231	865	976	1. 78	22.0	4.8

調合表

表-3

Development of rapid testing method for chloride content in concrete

-Effect of dorill diameter and core diameter-

Masahiro BIRUMACHI, Noboru YUASA Yoshio KASAI and Yoshitomo YAMADA

2-2. 供試体の養生および施工

供試体打設後、材齢2日経過時に、300 ×300 mmの暴露面2面は、ビニールシート で覆い、図-1に示すように供試体300×150 mmの4面をウレタン樹脂を塗布した。その 後、材齢3日にビニールシートを剥がし、 恒温恒湿室(20°C、RH 60%)にて300×300 mm の面2面を開放し、気中養生を行った。

2-3. 塩分浸漬乾燥試験機

材齢 28 日になった時点で、供試体を塩分 浸漬乾燥試験機に入れ、1 サイクルを乾燥 過程4日(96時間)、浸漬過程3日(72時間) として、5 サイクルまで行った。試験条件 を表-4に示す。

2-4. ハンマードリルを用いたドリル削孔粉の採取方法および試料調整

本研究は、 $\phi 6$ (D6)、 $\phi 10$ (D10)、 $\phi 15$ (D15)、 $\phi 20$ (D20)、 $\phi 25$ (D25)、 $\phi 30$ (D30) nmのドリ ル刃を用いてH社製のハンマードリルで暴 露面から深さ1 cmごと最高8 cmまでコンク リート削孔粉を採取した。また、**図-2** に示 すようにハンマードリルにコンクリート削 孔粉を全量採取するためにカバーを取り付 けた。その後、振動ミルで150 μ m以下の微 粉末化し、鉄粉を取り除いた。

2-5. コアドリルを用いたコア供試体の採取 方法および試料調整

本研究は、13(C13)、25(C25)、33(C33)、 50(C50)、75(C75)、100(C100)mmのコアド リル刃でS社製のコアドリルを用いて、JIS A 1107「コンクリートからのコアの採取方 法及び圧縮強度試験方法」に準じて、採取し た。採取した試料は、暴露面から深さ1cm ごとに8cmまで湿式のコンクリートカッターを用 いて切断した。その後、ジョーククラッシャ ーで5mm以下にし、振動ミルで150µm以下 の微粉末化した後、鉄粉を取り除いた。

2-6. 全塩化物イオン量の測定

JISA 1154「硬化コンクリート中に含まれる塩化 物イオンの試験方法」に準じて、電位差滴定を 行い、全塩化物イオン量を測定した。

3. 結果および考察

3-1. 各水セメント比におけるドリルの塩分 浸透深さの検討

図-3は、5サイクルにおけるドリル削孔 粉のコンクリート表面からの塩化物イオン の浸透深さを示したものである。W/C=60、 80%のコンクリートにおいて表面の方が 内部よりも全塩化物イオン量が大きくな った。

また径を変えた場合、W/C=60、80%にお いて、多少のばらつきが生じたが、表層 から内部までの深さごとに同量の全塩化 物イオン量であることが考えられる。

3-2. 各水セメント比におけるコアの塩分浸透深 さの検討

図-4 は、5 サイクルにおける各径コアの コンクリート表面からの塩化物イオンの浸 透深さを示したものである。W/C=60、80% のコンクリートにおいて表面の方が内部よ りも全塩化物イオン量が大きくなった。

また径を変えた場合、表面部分で大きな ばらつきがあるが、内部の方では径を変え た場合でも、多少なばらつきが生じたが、 同量の全塩化物イオン量があること考えら れる。

3-3. 深さごとにみたドリル径およびコア径 と全塩化物イオン量の関係

図-5、図-6は、深さごとにみたドリル径・ コア径を変えた場合の全塩化物イオン量の 影響を示したものである。 φ100 のコアと 各径コアおよび各ドリル径をみると、表面 付近の全塩化物イオン量は、大きなばらつ きがみられるが、表面から深くなるにつれ、 C100 の全塩化物イオン量 に近い値となっ た。

3-4. C100 とドリルおよびコアの全塩化物 イオン量の関係

図-7は、C100とドリル削孔粉および各 径コアの全塩化物イオン量を対応したも のであり、表-5、表-6は、C100とドリル 削孔粉および各径コアの全塩化物イオン 量の関係式と相関係数を示したものであ る。C100とドリル削孔粉および各径コア の全塩化物イオン量の関係において、C100 の全塩化物イオン量に対する傾きは、1以下であり、 ばらつきが生じているが、0.9以上の高い 相関が得られた。

4. まとめ

本報告では、塩分浸漬乾燥5サイクル の結果に基づき、ドリル径とコア径を変 えた場合の塩化物イオン量測定に及ぼす 影響を検討し、コアおよびドリルにおい て小さい径で全塩化物イオン量の測定方 法を検討した結果を次の通りである。

- (1)各水セメント比におけるドリルの塩 分浸透深さの検討において、ドリル径 を変えた場合、多少のばらつきが生じ たが、表層から内部までの深さごとに 同量の全塩化物イオン量であることが 考えられる。
- (2) 各水セメント比におけるコアの塩分浸透深さの 検討において、コア径を変えた場合、表面 部分で大きなばらつきが生じたが、内 部の方では径を変えた場合でも、多少 なばらつきがあるが、同量の全塩化物 イオン量があった。
- (3) 表面付近の全塩化物イオン量は、大きなばらつきがみられるが、表面から深くなるにつれ、C100の全塩化物イオン量に近い値となった。
- (4) C100 とドリル削孔粉および各径コアの 全塩化物イオン量の関係において、

図-7 C100と各径のドリル消化粉およびコアの

全塩化物イオン量の関係

表-5 ドリル削孔粉の関係式と相関係数

径	関係式	相関係数
D30	Y=0.90X	0.963
D25	Y=0.92X	0.919
D20	Y=0.95X	0.954
D15	Y=0.92X	0.924
D10	Y=0.96X	0.960
D6	Y=0.95X	0.950

表-6 各径コアの関係式と相関係数

	-	
径	関係式	相関係数
C75	Y=0.93X	0.988
C50	Y=1.01X	0.924
C33	Y=0.83X	0.948
C25	Y=0.93X	0.951
C13	Y=0.68X	0.977

C100の全塩化物イオン量に対する傾きは、1以下 であり、ばらつきが生じているが、0.9 以上の高い相関が得られた。

謝辞 筆者の一人である日本大学名誉教授 笠井芳夫先生は、本論文の執筆中である平 成23年10月18日に他界された。先生のご 尽力に感謝するとともに、ご冥福をお祈り いたします。

[参考文献]

- 1) 湯浅昇・笠井芳夫・松井勇:ドリル肖 印約を用いたコンクリート中の塩化物イオン量の現場式験方法の提案 コンクリート工学年次 論文報告集, Vol. 21, No. 2, pp1303~1308, 1999.
- 中田善久・笠井芳夫・横山滋・西山面羊: コンクリートコアの直径が 単位セメント量の判定き場為結果に及ぼす景響、非破壊検査協 会, Vol. 46, No. 7, pp511~519, 1997. 7.