高流動コンクリートの0ロート流下試験への

レーザービーム法の適用に関する研究

日大生産工(院)〇島崎 勝広 日大生産工 越川 茂雄 日大生産工 山口 晋

1. はじめに

フレッシュコンクリートの塑性粘度および降伏 値のレオロジー定数はコンクリートの流動性、材 料分離抵抗性およびポンプ圧送性の評価に重要と なる。このレオロジー定数の求め方には各種の試 験方法があるが、いずれの場合においても装置が 大掛かりで試験も簡便でなく、施工現場において ごく短時間で品質管理を行うことは困難である。

そこで谷川氏は、大型のO漏斗の流下時間より レオロジー定数の一つである塑性粘度を求める解 析方法を提案している。しかし、これらの方法に よる実験検討はモルタルによるもので高流動コン クリートへの適用性について検討した例はほとん どないのが現状である。

本研究は、高流動コンクリートに採用されて いる0ロート流下時間の目視のよる人為的誤差 に着目し、試料上面にレーザービームを照射し 流下時間を測定する方法について検討した。

2. 使用材料および配合

実験に用いた高流動コンクリートは、粉体系 コンクリートであり、使用材料は表.1の通りで ある。粉体系高流動コンクリートの配合は表.2 に示す通りで、単位粗骨材量を調整したNo.1か らNo.4の4配合について実験検討を行った。

3. 試験方法

3.1スランプフロー試験

スランプフロー試験は、JIS A 1150「コンク リートのスランプフロー試験方法」に準拠した。

3.2流下試験方法

流下試験は、JSCE-F 512-199「高流動コンク リートの漏斗を用いた流下試験(案)に準拠し、 図.1に示すO漏斗(容量10リットル)を用いた。 (1)目視法 目視による計測方法は、上部方向(試料上部) から見て開口した瞬間を全量流出完了とした。 流下時間測定には1/100秒単位のストップウォ ッチを用いて測定した。

(2) レーザービーム法

レーザービームによる流下時間の測定は、レ ーザービーム(k 社製 高性能レーザー変位計) をO漏斗試料上面に照射し測定した。なお、流 下時間は1/1000秒毎に測定した。

表-1. 使用材料

セメント	T社製普通ポルトランドセメント			
	密度:3.16g/cm ² F. M:6.40			
泪和井	A社製 石灰石微粉末			
他们的	密度:2.71g/cm ²			
細骨材	千葉県君津産山砂(~5mm)			
	密度:2.63g/cm ²			
粗骨材	事 古	(20~10mm:60%)		
	来京都肖 <i>海连砂石矸石</i> :	(10~5mm:40%)		
	密度:2.68g/cm ²			
混和剤	B社製高性能AE剤: SP8HVLL			

図 - 1. レーザービーム法による0漏斗試験

高性能	· 増粘剤	高性能	91 F	売与号								
減水剤		減水剤 A	E剤	エメ里								
(%)	(kg/m^3)	(%)	(mm)	(%)								
			570 × 590	4.8								
40/	0.2	40/	680 × 700	4.3								
4%		4% 2	2A 670 × 740) 4.7								
			670 × 650	3.5								
	0.2		4%	4% 2A 680 × 700 670 × 740 670 × 650								

表-2. 配合表

Application of the laser beam method to the O funnel style flow examination of hi-flow-concrete

Katsuhiro SHIMAZAKI, Shigeo KOSHIKAWA, and Shin YAMAGUCHI

4. 試験結果および考察

4.1 レーザービームによる流下時間曲線 レーザービームによる流下時間曲線を図.2に 示す。この図は、試料の流下時間を1/1000(s) 毎に測定した流下時間曲線である。この結果に よれば、単位粗骨材率が0.33および0.35の場合、 流下曲線は連続となっている。これに対し、単 位粗骨材量0.28および0.40の場合、深さ400mm 前後付近において連続性に変化が生じている。 そこで、深さ400mm付近の流下時間曲線を拡大 し、図.3~6に示す。この結果、単位粗骨材率0.28 および0.40の場合、約400mm付近から明らかに 不連続となっている事を確認した。これは漏斗 の形状が変化する吐出し口付近で、粗骨材の偏 りによる閉塞を示すものである。

4.2 レーザービームおよび目視流下時間 より算出した塑性粘度

塑性粘度 (η_{pl}) は谷川氏が提案した式より算 出した。表-3に各流下時間より算出した塑性粘 度を示す。この結果によれば、レーザービーム の場合、閉塞の有無2通りの計算値比は、0.96 ~1.00とほぼ同等である。

この結果に対し目視の場合は、レーザービー ムに比して、いずれの場合とも約0.93~0.99と 小となる事を示した。このことは目視の流下時 間測定の場合、1.02~1.10と大となる事を示し た。このことは、目視流下時間測定の場合人為 的変動を伴う事を示唆するものと考える。

5.まとめ

本研究で得られた新しい知見は以下の通りで ある。

 (1)流下時間は目視の場合、レーザービームの約
1.1倍と大きくなる人為的変動を伴うので、レ ーザービームにより測定するのが良い。

(2) レーザービームの流下曲線の(不)連続性を 判定することにより、練混ぜ直後の主にマト リックス粘性による粗骨材の偏りが、適確に 判定できる。

(3)単位粗骨材量や高性能減水剤の使用等を考慮した高流動コンクリートの最適配合の選定に レーザービームによる流下曲線が有効となることを示すものである。

参考文献

 谷川恭雄ほか:セメント系年生材料のロート 試験に関するレオロジー的考察、セメント系充 填材に関するシンポジウム論文集、pp,1-6,1992.12

表-3. 各流下時間より算出した塑性粘度

単位 粗骨材 率	SLF (mm)	流下時間(S)		塑性粘度(η _{p1})			
		目視:t	レーザー		日相正	レーザー	
			全量:T	推定:T´	日祝∶て	全量:T	推定:T′
0.28	580	13.86	12.558	12.05	206 (1.10)	187 (1.00)	179 (0.96)
0.33	690	14.07	12.394	—	225 (1.02)	207 (1.00)	-
0.35	690	20.42	18.862	—	331 (1.07)	309 (1.00)	-
0.40	660	27.58	26.401	25.9	444 (1.05)	425 (1.00)	417 (0.98)

図 - 6. 流下時間曲線(拡大) 単位粗骨材率: 0.35