大型車両の運動に与える操舵系剛性の影響

日大生産工(院) 〇黒木 亨 日大生産工 栗谷川 幸代 大阪産大・工 金子 哲也 日大生産工(研究員) 籾山 冨士男 日大生産工 景山 一郎

1 まえがき

現在,環境対策や交通物流の効率化など,自動車 交通の諸問題解決を目的として,新エネルギー・産 業技術総合開発機構では「エネルギーITS推進事業」 による自動運転・隊列走行に関する研究開発プロジ ェクトが実施されている¹⁾. 隊列走行時に車間距離を 狭めることにより空気抵抗低減効果を生み, CO₂排出 量の削減が期待されている.

これら自動運転・隊列走行をする際にはドライバ が行っている操作を制御系が受け持つ必要があり, 対象とする車両の特性を把握することが重要とな る.

本研究では、操舵系の剛性変化が車両運動に与え る影響について検討するため、後二軸の大型車の車 両モデルと操舵系モデルを構築した.また、それら を組み合わせた車両運動モデルを使用し、実車実験 により走行中の微小操舵特性の影響について検討を 行った.

2 車両運動モデルの構築

2.1. 車両モデル

本研究で使用する車両を図1に示す.対象とする車 両は,前一軸,後二軸の大型車である.ここでは, 操舵系や懸架系などの要素をすべて含んだ等価コー ナリングパワとしてタイヤ特性を表現する.車両モ デルを図2に示す.車両モデルは三軸車の平面運動を 考え,横すべり運動とヨーイング運動の2自由度で表 現し,導いた運動方程式を以下に示す.

y方向のつり合い式

$$mv\beta + (K_f + K_{r1} + K_{r2})\beta$$

$$+ \left\{ mv + \frac{(K_f l_f - K_{r1} l_{r1} + K_{r2} l_{r2})}{v} \right\} \omega = K_f \delta \quad (1)$$
z軸まわりのつり合い式

$$\frac{\left(K_{f}l_{f} - K_{r1}l_{r1} - K_{r2}l_{r2}\right)\beta + I\dot{\omega}}{\left(K_{f}l_{f}^{2} + K_{r1}l_{r1}^{2} + K_{r2}l_{r2}^{2}\right)\beta = K_{f}l_{f}\delta$$
(2)

Fig.1 Experimental vehicle

Fig.2 venicie model

ここで,各係数を表1に示す.(1),(2)式で,舵角一定 の定常円旋回時のステア特性,横すべり特性につい て解くと次式で記述される.

Study on The Characteristic of Vehicle Dynamics for Heavy Duty Vehicles from Steering Stiffness

Toru KUROKI, Yukiyo KURIYAGAWA, Tetsuya KANEKO, Fujio MOMIYAMA and Ichiro KAGEYAMA

$$\frac{R}{R_{0}} = 1 + K_{SF}v^{2} \quad (3)$$

$$\frac{\beta}{\beta_{0}} = \frac{1 + K_{\beta}v^{2}}{\delta const} = \frac{1 + K_{\beta}v^{2}}{1 + K_{SF}v^{2}} \quad (4)$$

$$K_{SF} = \frac{m(K_{r1}l_{r1} + K_{r2}l_{r2} - K_{f}l_{f})}{K_{f} \{K_{r1}(l_{f} + l_{r1})^{2} + K_{r2}(l_{f} + l_{r2})^{2}\} + K_{r1}K_{r2}(l_{r1} - l_{r2})^{2}} \quad (5)$$

$$K_{\beta} = -\frac{ml_{f}}{K_{r1}l_{r1}(l_{f} + l_{r1}) + K_{r2}l_{r2}(l_{f} + l_{r2})} \quad (6)$$

この式において、Rは旋回半径を示しており、R₀は極低 速走行時の幾何学的な旋回半径である.また、同様に β は横すべり角を示しており、 β_0 は極低速走行時の幾何学 的な横すべり角である.(5)式は、スタビリティファクタ を表し、(6)式は、横すべり係数を表している.次に、旋 回半径一定の定常円旋回時のステア特性、横すべり特性 について解くと、ステア特性は(3)式と同様になり、横す べり特性については次式で記述できる.

$$\frac{\beta}{\beta_0}_{R:const} = 1 + K_\beta v^2 \quad (7)$$

これらの式を用い、等価コーナリングパワを部分定常円 旋回試験より求める.本モデルでは、等価コーナリング パワを垂直荷重で割った等価コーナリング係数を用い る.後輪の等価コーナリング係数を同じものとして取り 扱い、それぞれの等価コーナリングパワを以下の式で表 す.

 $K_f = C_f N_f \quad (8)$

 $K_{r1} = C_r N_{r1} \quad (9)$

 $K_{r2} = C_r N_{r2}$ (10)

(8), (9), (10)式を(5), (6)式に代入し連立することにより 等価コーナリング係数を求める.

実験は,操舵角-130degの一定とし,速度条件を20,40, 50,60,70km/hの5水準で計測した.試験の結果として ステア特性(R/R_0 -v²線図)を図3に示す.図3の直線近似の 傾きからスタビリティファクタを求める.横すべり特性 を導くため,スタビリティファクタと(4)式,(7)式の関係 から旋回半径一定の横すべり特性を導き,旋回半径一定 の横すべり特性(β/β_0 -v²線図)の直線近似の傾きから横す べり係数を求める.旋回半径一定の横すべり特性(β/β_0 -v² 線図)を図4に示し、求めたスタビリティファクタと横す べり係数を下記に示す.

 $K_{SF} = 1.98 \times 10^{-3} s^2 / m^2$

$$K_{\beta} = -4.76 \times 10^{-3} s^2 / m$$

実験より求めたスタビリティファクタと横すべり係数 を (5), (6)式に代入し,連立して等価コーナリング係数 を求めた結果を下記に示す.

 $C_f = 3.78$

$$C_f = 6.90$$

2.3. 車両運動モデル

操舵系の剛性が走行中に与える影響について検討を 行うため、操舵系モデルと車両モデルを組み合わせた車 両運動モデルを考える.走行中の車両運動モデルを図5 に示す.車両モデルは、前に示した三軸車の平面運動を 考え、操舵系モデルでは、ステアリングホイールがばね とダンパ、ギヤで連結されているモデルとすると、状態 方程式は次式で表わせる.

Fig.4 Results of steady state cornering

ここで、図5中の各係数を表1に、また、マトリックス中の係数を表2に示す.

2.4. 操舵系パラメータの同定

操舵系剛性係数を検討するため、(11)式より,操舵系 を含んだスタビリティファクタと横すべり係数を求め ると次式となる.

$$K_{SF} = \frac{m\left(K_{r1}l_{r1} + K_{r2}l_{r2} - K_{f}l_{f} + \frac{\mathcal{G}_{f}K_{f}^{2}}{K_{S}N^{2} + \zeta K_{f}}\right)}{K_{f}\left\{K_{r1}\left(l_{f} + l_{r1}\right)^{2} + K_{r2}\left(l_{f} + l_{r2}\right)^{2}\right\} + K_{r1}K_{r2}\left(l_{r1} - l_{r2}\right)^{2}} - \frac{\zeta K_{f}^{2}m\left(K_{r1}l_{r1} + K_{r2}l_{r2} - K_{f}l_{f} + \frac{\mathcal{G}_{f}K_{f}^{2}}{K_{S}N^{2} + \zeta K_{f}}\right)}{\left(K_{S}N^{2} + \zeta K_{f}\right)\left(K_{r1}\left(l_{f} + l_{r1}\right)^{2} + K_{r2}\left(l_{f} + l_{r2}\right)^{2}\right)^{2}}$$
(12)

$$K_{\beta} = -\frac{ml_f}{K_{r1}l_{r1}(l_f + l_{r1}) + K_{r2}l_{r2}(l_f + l_{r2})}$$
(13)

ここで,(5)式と(12)式,(6)式と(13)式を比較すると,横 すべり係数に関しては同じ式である.そこで,後輪の等 価コーナリング係数は同じ特性として取り扱うことに する.スタビリティファクタに関しては,操舵系の項が 付加されている.(1),(2)式より求めた等価コーナリング 係数は,前に述べた通り操舵系や懸架系などの動的特性 を含んでいるため,操舵系モデルを考慮する際,操舵系 剛性を分離した前輪の等価コーナリング係数(C_f*)を使 用する必要がある.そこで,操舵系モデルを考慮した前 輪の等価コーナリング係数(C_f*)は後輪の等価コーナリ ング係数(C_f)と同じものを使用し,(12)式より求めた操舵 系剛性係数を以下に示す.

$K_{S} = 63.1 Nm / rad$

次に、操舵系減衰係数について実走行データより検討を 行う.図6に未使用の高速道路を走行した実験結果を示 す.ここで、実舵角のデータについて自己相関関数を求 め、操舵系の性質について調べる.図6の実舵角の波形 の自己相関関数を求めたものを図7に示す.ここで、横 軸のΔTは一定時間(0.01s)ずつずらした時間差である.図 7の波形より周期が約3sで振動周波数は約0.33Hzとなる. 一般的に操舵系の固有振動数は0.33Hzより大きいがその 振動が表れていない.そこで、操舵系の減衰比を0.707 とし、操舵系を1自由度系の振動として求めた操舵系減 衰係数を下記に示す.

$C_s = 4400 Nms / rad$

2.5. 実験によるモデルの確認

構築した車両運動モデルが実際の車両を表現しうる か確認するため、車速80km/hのスラローム試験の実験結 果より検証する.実験結果と実験で得られた操舵角を用 い、モデルによって解析したヨーレイトと横すべり角の 比較結果を図8に示す.ヨーレイトと横すべり角の実験 値とモデル値の比較結果から、今回構築したモデルが実 際の車両運動を良く表現していることがわかる.

3 微小操舵時の運動特性

3.1. 操舵系剛性係数

筆者らは過去,操舵系剛性係数の変化についてパワー ステリング(以下PS)のバルブ不感帯の影響やガタ,遊び 等の非線形特性を以下の式で表現した²⁾.

$$K_{S} = K_{S0} \left(1 - e^{-\frac{1}{\theta_{L}} |\Delta\theta|} \right)^{n} \quad (14)$$

Table 1 Vehicle model parameters

М	Vehicle mass	$1.28 \times 10^4 \text{ kg}$
Ι	Vehicle inertia moment	1.36×10 ⁵ kg m ²
$l_{\rm f}$	Length from CG to front axle	3.96 m
l_{r1}	Length from CG to 1st rear axle	1.94 m
l_{r2}	Length from CG to 2st rear axle	3.25 m
N _f	Front axle weight	5.63×10 ⁴ N
N _{r1}	1st Rear axle weight	$3.61 \times 10^4 \text{ N}$
N _{r2}	2st Rear axle weight	$3.28 \times 10^4 \text{ N}$
Ν	Steering gear ratio	20.6
I_{δ}	tire inertia	200 kg m ²
$\theta_{\rm L}$	Relaxation angle	0.05
n	Shape adjustment	1
ζ	Trail	0.0642m
K _f	Cornering power of front axle	(N/rad)
K _{r1}	Cornering power of rear 1st axle	(N/rad)
K _{r2}	Cornering power of rear 2st axle	(N/rad)
v	Vehicle speed	(m/s)
β	Sideslip angle at CG	(rad)
$\beta_{\rm f}$	Sideslip angle at front	(rad)
β_{r1}	Sideslip angle at 1st rear	(rad)
β_{r2}	Sideslip angle at 2st rear	(rad)
ω	Yaw rate	(rad/s)

ここで、 $\Delta \theta$:ハンドル角とハンドル軸回りに換算した実 舵角の角度差(θ - δ N)、 θ_L :緩和角度、n:形状調整係数、 K_{s0} :無次元化剛性係数である.図9に示すように θ_L やnのパラメータを変化させることにより、等価的に操舵系 不感帯の影響を表現することができる.

Table 2 Matrix of coefficients		
a ₁₁	$-(K_{\rm f}+K_{\rm r1}+K_{\rm r2})/{\rm mv}$	
a ₁₂	$-\{1+(l_{f}K_{f}-l_{r1}K_{r1}-l_{r2}K_{r2})/mv^{2}\}$	
a ₁₃	K _f /mv	
a ₂₁	$-(l_{f}K_{f}-l_{r1}K_{r1}-l_{r2}K_{r2})/I$	
a ₂₂	$-(l_{f}^{2}K_{f}+l_{r1}^{2}K_{r1}+l_{r2}^{2}K_{r2})/I_{V}$	
a ₂₃	l _f K _f /I	
a ₄₁	$\xi K_{f'} I_{\delta}$	
a ₄₂	$\xi l_f K_f / l_{\delta} v$	
a ₄₃	-($K_S N^2 + \xi K_f)/I_\delta$	
a ₄₄	$-C_{\rm S}/I_{\delta}$	
b ₄	K _S N/I _δ	

3.2. 操舵系剛性係数

これまでに構築したモデルを使用し、大型車の微小操 舵領域について検討を行う.構築した車両運動モデルを 使用し、実車実験より得られた操舵角を入力とし、出力 をヨーレイトとした解析結果を図10,11に示す.各図に おいて操舵系の等価ねじり剛性(K_s)を一定とした場合を 2つ目に、不感帯を考慮した(14)式の剛性変化の結果を3 つ目に示す.大操舵時では、2つのヨーレイトの波形に 顕著な差が表れていない.しかし、操舵角が10deg以下の 微小操舵領域では、操舵系不感帯の影響を考慮したモデ ルの方が実験結果のヨーレイトの波形を良く表現して いる.微小操舵領域では、パワーステリングや操舵系の 遊び、ガタ等の操舵系不感帯の影響により、実舵角が大 操舵時に比べ、舵が切れず、車両応答に表れないことが わかる.

4 結論

本研究は、大型車の車両運動について特に直進走行時 に問題となる微小操舵領域の特性について検討を行っ たものである.車両運動モデルを構築し、タイヤ特性や 操舵系パラメータの算出を行い実験によりモデルの確 認を行った.その結果、微小操舵領域では、パワーステ リングや操舵系の遊び、ガタ等の操舵系不感帯により車 両応答に影響を受け、操舵舵系剛性変化モデルを使用す ることによりその影響を確認できた.

実際の走行中では、横風や路面カントなどといった外 乱の影響により車両応答に変化が表れ、自動操舵時の制 御に影響を与えることがある. 今後、構築したモデルを 使用し、車両運動に与える外乱の影響について確認する 必要がある.

謝辞

本研究は,新エネルギー・産業技術総合開発機構 (NEDO)の研究プロジェクトの一部として実施したもの である.関係各位に感謝の意を表す次第である.

「参考文献」

1) 青木啓二ほか:自動運転・隊列走行システムの 開発(第1報),自動車技術会学術講演会前刷集, No.94-9, p.1-4 (2009)

 2)黒木亨ほか:大型車の直進性に与える操舵系の 剛性に関する研究,自動車技術会学術講演会前刷 集, No.7-10, p.7-12 (2010)

Fig.8 Comparison between experimental result and model output

Fig.10 Comparison between experimental result and model output

