最小個テスト集合の検出故障及びケアビット分布の解析

日大生産工(院)	○山崎 達也	日ナ
九大	吉村 正義	明ナ

1. はじめに

近年,半導体微細化技術の進歩のため,大規 模集積回路(Large Scale Integrated circuits :LSI)が大規模化,複雑化し,かつ故障モデ ルの多様化に伴い,テストコストの増加が問題 となっている[1].テストコストはテストパタ ーン数と比例関係にあるため,テスト品質を落 とさずにテストパターン数を削減するテスト 圧縮を用いることにより,テストコストの削減 が期待できる.

小規模回路では,ほぼ最小のテスト集合を得る静的圧縮[2][3]と動的圧縮[2][3]を適用した アルゴリズム[2]が提案されている.しかしな がら,大規模回路では最小のテスト集合得るための計算量が多く,現実的な計算時間での適用 は困難である.

そこで大規模回路に適用可能な手法として, 文献[4]では、自動テストパターン生成ツール (Aut-o Test Pattern Generation: ATPG)が 生成した初期テスト集合に対しドントケア抽 出[5],頂点彩色問題を用いた極小解圧縮[6][7], 2 重検出法[2]を繰り返し行う静的圧縮手法が 提案されている.しかしながら,[4]の手法で は、初期テスト集合に対して静的圧縮を行うた め,テスト圧縮効率が初期テスト集合に依存す る.したがって、初期テスト集合にテスト圧縮 に非効率的なテストパターンが存在し、テスト パターン数削減の妨げになる可能性があり, 最 終テスト集合のテストパターン数の増加につ ながる.よって、初期テスト集合の圧縮に非効 率なテストパターンを, 圧縮に効率の良いテス トパターンに再生成する,または,圧縮に効率 の良い初期テスト集合を生成することにより, テストパターン数が削減されると考えられる. テストパターン再生成法として, Two-by-One

日大生産工	細川	利典
明大	山崎	浩二

アルゴリズム[2]が提案されているが、最大独 立故障集合[2]を求める必要があるため、大規 模回路では,計算時間が多大なため適用が困難 である.また, 圧縮に効率の良い初期テスト集 合を生成する手法として, 圧縮の効率を図るテ ストパターン生成法として、ドントケア故障シ ミュレーションを用いた動的圧縮[8]が挙げら れる.しかしながら、テスト生成時に圧縮バッ ファ[8]内のテストパターンとのテスト圧縮容 易性を考慮していないため, 圧縮バッファに格 納されるテストパターンのケアビット位置が 偏る可能性があり, 圧縮の効率を下げる可能性 がある.本研究では、動的圧縮中のテスト生成 する対象故障を選択する際, 圧縮バッファに格 納された, テストパターンのケアビットを考慮 し、テスト生成を行うようなテスト圧縮指向テ スト生成法を提案することを最終的な目標と する.

本論文では、テスト圧縮指向テスト生成法を 提案するための前段階として MCNC'91 ベン チマーク回路の入力数とフリップフロップ(F F)数の合計が6以下の回路において、最小個テ スト集合を生成し、それらのテストパターンが 検出している故障に対するケアビットを考察 する.

2. テスト圧縮指向テスト生成

テスト圧縮指向テスト生成とは、テスト圧縮 を考慮したテスト生成法である.動的テスト圧 縮において、圧縮バッファ[8]に格納されるテ ストパターンに対し、検出故障やケアビットの 位置を考慮しテスト生成を行う.図1にテスト 圧縮指向テスト生成の全体フローチャートを 示す.

Analysis of detect faults and care bit distribution

on a minimum test set

Tatsuya YAMAZAKI, Toshinori HOSOKAWA Masayoshi YOSHIMURA, and Koji YAMAZAKI

(step 1)

テスト圧縮指向テスト生成を行う.詳細は図 2に示す.

(step 2)

テスト圧縮指向テスト生成で生成されたテ ストパターンを圧縮バッファに格納する.

(step 3)

圧縮バッファ内のテストパターンに対しテ スト圧縮を行う.詳細は図3に示す.

(step 4)

全故障検出済みかを確認する.検出済みなら 終了し,まだ,未検出故障が存在するなら step1に戻る.

(step 1)

テスト対象故障選択を行う. 圧縮バッファ内 のテストパターンの検出故障情報とケアビッ ト分布を基に, 圧縮の効率のよりテストパター ンが生成されやすい故障を選択する.

(step 2)

テスト対象故障の検出可能外部出力を評価 する. 圧縮バッファ内のテストパターンと圧縮 が容易なテストパターンが生成可能な検出外 部出力を選択する.

(step 3)

テスト生成時に,故障伝搬経路を検査し,そ の各経路の影響範囲を調査する.生成されるテ ストパターンのケアビット分布を考慮した故 障伝搬経路を選択する.

(step 4)

テスト生成正当化時に, 圧縮バッファ内のテ ストパターンのケアビット分布を考慮し, ケア ビットが特定入力に集中しないような正当化 を行う.

図 3 にテスト圧縮指向テスト生成のテスト 圧縮部のフローチャートを示す.

図 3.テスト圧縮指向テスト生成 テスト圧縮部フローチャート

(step 1)

圧縮バッファ内のテストパターンに対しド ントケア抽出を行う.

(step 2)

ドントケア抽出を行ったテストパターン集 合に対し極小解圧縮を行い、テストパターンを 削減する. 貪欲法アルゴリズムには Dsatur ア ルゴリズム[7]を適用する.

(step 3)

極小解圧縮を行ったテストパターン集合の ドントケアに対し0,1ランダム割当を行う. (step 4)

0, 1 ランダム割当を行ったテストパターン 集合に対し故障シミュレーションを実行する. (step 5)

故障シミュレーションを実行したテストパタ ーンに対し,その検出故障を対象とした2重検 出を行い,テストパターンを削減する.

3. 最小個テスト集合

最小個テスト集合とは、テスト対象回路の検 出対象故障をすべて検出可能な最小のテスト パターン集合である.最小個テスト集合のテス トパターンは、1つのテストパターンでより多 くの故障を検出する.最小個テスト集合の各テ ストパターンの検出故障情報を調査すること により、圧縮に効率のよいテストパターン生成 の指標となることが考えられる.

今回, テスト圧縮の効率よいテストパターン を生成するために, 目標故障の選択, 故障検出 外部出力, 故障伝搬経路, 後方追跡経路を最小 個テスト集合から考察する.

表1に MCNC' 91 ベンチマーク回路の入力 数とフリップフロップ(FF)数の合計が 6 以下 の回路において,最小個テスト集合を生成した 結果を示す.

回路名	外部入力数	外部出力数	最小個テスト数
mc	5	7	7
bbtas	5	5	10
dk27	4	5	10
train4	4	3	10
shiftreg	4	4	11
lion9	6	5	14

表 1. 最小個テスト集合生成結果

表1において,「回路名」は最小個テスト生成した回路名である.「外部入力数」は最小個 テスト生成した回路の外部入力数である.「外 部出力数」は最小個テスト生成した回路の外部 出力数である.「最小個テスト数」は最小個テ スト生成した回路の最小個テスト生成数であ る.

表2に最小個テスト生成した回路である mc の最小個テスト集合の故障検出情報を示す.

表2において「テストパターン」は mc の最 小個テスト集合のテストパターンを示す.「検 出故障数」は各テストパターンの検出故障数を 示す.「検出必須故障数」は各テストパターン の検出する必須故障数を示す.必須故障とは, テスト集合内で 1 つのテストパターンでしか 検出できない故障である.

表 2. mc の最小個テスト集合

テストパターン	検出故障数	検出必須故障数
t1	32	4
t2	33	7
t3	32	6
t4	33	4
t5	31	3
t6	29	3
t7	30	4

表2に示すように,最小個テスト集合は,各 テストパターンの検出故障数が均一であるこ とがわかる.

最小個テスト集合の各テストパターンが検 出する故障の活性化経路を調査することによ り、故障ごとに必要なケアビット分布情報と、 1 つのテストパターンの故障の被覆情報を得 ることができる.そして、圧縮に効率のよりテ ストパターンを生成するための、各テストパタ ーンに検出させる故障の組合せと、故障を検出 するための各テストパターンのケアビット分 布を考察することができる.

図4にmcの回路図と,mcの最小個テスト 集合の1つのテストパターンが検出する,必須 故障を示した図である.

図 4. mc の回路図と必須故障

最小個テスト集合の必須故障である信号線1 の0縮退故障と信号線kの0縮退故障は,最 小個テスト集合では1つのテストパターン (a,b,c,d,e)=(1,0,1,1,0)で両方とも検出される. 2つの故障を検出するテスト生成をする際,信 号線1の0縮退故障に対し(a,b,c,d,e)=(1,0,X, X,0),信号線kの0縮退故障に対し,(a,b,c,d,e) =(1,0,1,1,X)が生成された場合.(1,0,X,X,0)と (1,0,1,1,X)は圧縮可能なので,信号線1の0縮 退故障と信号線kの0縮退故障を1つのテス トパターン検出可能なテスト生成が実行され る.しかし,信号線kの0縮退故障は,信号 線の正当化の経路が複数あり,(a,b,c,d,e)= (1,0,X,0,1)でも生成可能である.(a,b,c,d,e)=(1, 0,X,0,1)が生成された場合,信号線1の0縮退 故障を検出するテストパターン(a,b,c,d,e)= (1,0,X,X,0)と圧縮不可能である.そのため,結 果的にテストパターン数が増加する.つまり, テスト圧縮の効率よいテストパターンを生成 するためには,先にテスト生成されたテストパ ターンのケアビット位置を考慮した故障伝搬 経路,後方追跡経路を選択することが重要であ ると考えられる.

4. 実験結果

MCNC'91 ベンチマーク回路 mc の最小個 テスト集合について, テスト圧縮指向テスト生 成のための考察を行った.

表3に,mcの各出力における故障影響範囲 を示す.表3において、「po1」~「po7」は各 外部出力である.「EC」は各外部出力から到達 可能な信号線数、「EC-input」は各外部出力か ら到達可能な外部入力数、「faults」は各外部 出力で観測可能な故障数を示す.

表 3. mc の各外部出力における影響範囲

	po1	po2	po3	po4	po5	po6	po7
EC	16	22	9	4	8	23	4
EC-input	3	5	2	1	2	4	1
faults	32	44	18	8	16	46	8

表4に MCNC'91 ベンチマーク回路 mcの 最小個テスト集合の各テストパターン t1~t7 に対する,各外部出力で検出した故障数を示す.

表 4. mc の各外部出力におけ	る故障検出
-------------------	-------

to	po1		po2		po3		po4		po5		po6		po7	
ιp	n	raito												
t1	5	31.25	12	54.55	1	11.11	4	100	6	75	14	60.87	4	100
t2	7	43.75	8	36.36	5	55.56	4	100	8	100	11	47.83	4	100
t3	12	75	3	13.64	9	100	4	100	4	50	1	4.348	4	100
t4	6	37.5	14	63.64	5	55.56	4	100	2	25	11	47.83	4	100
t5	10	62.5	6	27.27	5	55.56	4	100	8	100	7	30.43	4	100
t6	6	37.5	15	68.18	5	55.56	4	100	2	25	11	47.83	4	100
t7	8	50	12	54.55	5	55.56	4	100	2	25	12	52.17	4	100
total		48.21		45.45		55.56		100		57.14		41.61		100

表4において、「po1」~「po7」は各外部出 力である.「tp」はテストパターンである.「n」 は各外部出力における対象テストパターンの 検出故障数、「taito」は各外部出力から到達可 能な信号線数と検出故障数の割合である. 表4から,すべてのテストパターンがすべての 外部出力で故障を検出することがわかる.つま り,各テストパターンが検出する故障を効率よ く分配していることがわかる.よって,テスト 圧縮指向テスト生成のために,故障の分配を考 慮することが重要であるとわかる.

5. おわりに

本論文ではテスト圧縮指向テスト生成を提 案するための前段階として,最小個テスト集合 の考察を行った.

今後の課題として,最小個テスト集合に対し, さらなる考察を行い,テスト圧縮指向テスト生 成を提案することを目指す.

参考文献

[1] Y.Sato, T.Ikeda, M.Nakao, and T.Nagum o, "Abist approach for very deepsub-micron (vdsm) defect, "Proc. International Test Con ference, pp. 283291, 2000.

[2] Seiji Kajihara, lrith Pomeranz, Kozo Kin oshita and Sudhakar M. Reddy "Cost-Effecti ve Generation of Minimal Test Sets for Stu ck-at Faults in Combinational Logic Circuit s", 30th ACM/IEEE Design Automation Con ference, pp102-106,1993

[3] P.Goel and B.C.Rosales, "Test Generation and Dynamic Compaction of Tests," Digest of papers 1979 Test Conf., pp189-192, 1979

[4] K. Miyase, S. Kajihara, "Scan Tree De sign : Test Compression with Test Vector Modification", IEICE, Vol.45 No.5, pp 12 70-1278, 2004

[5]K. Miyase, S. Kajihara "XID: Don't Care Identification of Test Patterns for Combinat ional Circuits," IEEE Trans. Computer-Aide d Design of Integrated Circuits and System s, Vol. 23, No. 2, pp. 321-326,Fed. 2004

[6] 八木澤圭, "テストパターンの静的圧縮にお ける厳密解と貪欲解の比較" IEICE Technical Report DC2007-79,2008

[7] D.Brelaz, "New methods to color the ver tices of a graph", Communications of the AC M, 22, pp.251-256,1979

[8] 秋山祐介, "ドントケア故障シミュレーショ ンを用いた動的テスト圧縮の効率化", 平成 18 年度日本大学生産工学部学術講演会数理情報部 会講演概要集,2006