継手部付き UFC パネルを用いた道路橋 RC 床版の疲労耐久性に関する実験研究

日大生産工(院) 〇山下 塁 日本大生産 阿部 忠 日本大生産 木田哲量 日本大生産 澤野利章 太平洋セメント(株) 田中敏嗣

1. はじめに

近年、建設事業のコスト縮減および建設施工に おける工期短縮を図るために、超高強度繊維補強 コンクリート(Ultra high-strength Fiber Reinforced Concert:以下、UFC)で製作した埋設型枠(以下、 UFCパネル)^{1).2)}とRC床版を合成したUFCパネル RC床版が提案されている³⁾。このUFCパネル は2次養生として蒸気養生が必要であることから 現場での施工が不可能である。そのため、UFCパ ネルは工場で製作後、架設現場までトラックで輸 送し、橋軸方向に並列配置させるために、継手部 を設ける必要がある。しかし、継手部が弱点部に なる可能性ある。さらに、曲げ変形が生じた場合 には継手部に引張力が作用し、RC部とUFCパネ ルとの接合部にはく離が生じる原因となると考え られる。

そこで本研究は、UFC パネルの継手部を重ね継手構 造とし、軸直角方向および軸方向の曲げ引張力に抵抗 させるためにコアを設け、そのコア内にコンクリート、 UFC 棒、鋼棒の3種類の材料を挿注入した供試体を 用いて輪荷重走行疲労実験を行い、等価走行回数、破 壊形状およびたわみから継手部付き UFC パネル RC 床版の実用性を検証する。

2. UFC パネルの施工法

2.1 UFC の施工手順 UFC パネルを用いた橋梁建 設現場における施工概念は図-1 になる。まず、工場 で UFC パネルの製作および鉄筋その加工を行う(図 -1(1)、(2))。これは、UFC の凝結時間が 18~20 時 間必要なためであり、UFC 打設後の 1 次養生は常温 で48時間、その後の2次養生は90℃で24時間の蒸 気養生の必要があるためである。次に、UFC パネル の製作および鉄筋加工した後、橋梁建設現場までトラ ック輸送を行う(図-1(3))。現場では、輸送された UFC パネルを橋梁主桁上に橋軸方向に順次並列に設 置する。そして、加工した鉄筋を順次配置してコンク リートを打設し、UFC パネルと一体構造化させる(図 -1(4))。その施工手順からすると、主桁施工と並 行して UFC パネルの製作および鉄筋加工が可能であ り、型枠の脱型が省略できることから工期の短縮、施 工の合理化が可能となる。

3. 供試体概要

3.1 使用材料 RC床版のコンクリートには、普 通ポルトランドセメント、5mm以下の砕砂および 5mm~20mmの砕石 (JIS-A5005) を用いた。コン クリートの圧縮強度はRC床版および継手部を設 けてないUFCパネルRC床版が35N/mm²、継手部付 きUFCパネルRC床版が32N/mm²である。また、鉄 筋はSD295A、D10を用いた。RC床版の鉄筋の降 伏強度、引張強度およびヤング係数は、それぞれ 385 N/mm²、520 N/mm²、200 kN/mm²である。UFC パネルRC床版の鉄筋の降伏強度、引張強度および ヤング係数は、それぞれ368 N/mm²、568 N/mm²、 200 kN/mm²である。次に、UFCパネルの使用材料 は、シリカフューム、珪砂、反応性微粉末などを 最密充填理論に基づいて配合したプレミックス材、 ポリカルボン酸系の高性能減水剤および直径 0.2mm、長さ15mmの鋼繊維を体積比の2%で練混 した。粗骨材は用いず、最大粒径2mmの硅砂を混

Experimental Study on Fatigue Resistance of Load Bridge RC slab Using UFC Panel with lap joint by Rui YAMASHITA, Tadashi ABE, Tetsukazu KIDA, Toshiaki SAWANO, and Satoshi TANAKA

図-2 供試体寸法

合している。UFCの圧縮強度、曲げ強度およびヤ ング係数は、それぞれ219.4N/mm²、34.9 N/mm²、 55.0 kN/mm²である。混和剤使用量は、目標フロー 値を240mmとして決定した。なお、UFCパネルの養 生は、前置き時間を48時間とし、脱型後の蒸気養生は 最高温度90℃を24時間保持して行った。

3.2 供試体寸法および鉄筋配置 本実験に用い た供試体寸法および鉄筋配置を図-2に示す。供試体は 現行道路橋示方書 4)に基づいて設計し、実床版の 1/2 モデルとした。すなわち、RC 床版およびUFC パネル RC 床版の寸法は、全長 1470mm、支間 1200mm、床版 厚130mm、継手部の厚さは20mm である。鉄筋は複鉄 筋配置とし、主鉄筋および配力筋は 100mm 間隔に配 置し、圧縮側は引張鉄筋量の 1/2 を配置した。各供試 体の有効高さは、軸方向、軸直方向でそれぞれ、105mm、 95mmとした。また、UFCパネルは引張主鉄筋のかぶ り内に配置し、厚さを20mmとした。また、UFCパネ ルと RC 床版の底面コンクリートとの合成効果を高 めるためには、UFC パネルの合成面形状が重要とな る。一般的に、UFC パネルの合成面形状には、凹部 を一様に設けた Pタイプが採用されている。Pタイプ は直径 9mm、合成面厚 5mm であり、この凹部にコン クリートが打設されて一体構造となる。よって、面積 率は、注入されるコンクリートは40%、UFCは60% となる。なお P タイプは、コンクリートとの合成面 のせん断強度が母材コンクリートと同程度の値を示 していることから、十分な付着が得られることが確認 されている^{2),3)}。ここで、P タイプの構造、合成面形 状および寸法を図-2に併記する。UFC パネルの寸法 は幅 1470mm、板厚 15mm、面厚は 5mm とし、RC 床 版のかぶり内に埋設する。UFC パネル RC 床版供試

図-4 継手の構造

体の作製手順を図-3に示す。まず、図-1に示す施工 システムに基づいて、製作された厚さ 20mm の UFC パネルを底面に配置したパネルの上面に直接引張鉄 筋を配置し、コンクリートを打設して、一体構造とした。 3.3 継手部の構造 建設現場に輸送された UFC パ ネルは、主桁上に橋軸方向に順次並列設置する。この 場合、UFC パネル間には継手構造を設ける必要があ る。継手部は、橋軸直角方向および橋軸方向の曲げ引 張力に抵抗させるために UFC パネル端部を重ね合わ せる構造、すなわち重ね継手構造とした。重ね継手と する場合のUFC パネル端部にコアを設け、ピンを挿 入して一体構造とする。この場合のピンは単せん断と なる。ここで、本研究で提案する継手構造を図-4に 示す。継手部を 100mm 重ね合わせ、曲げ引張抵抗用 材料配置のためにφ30mmの孔を300mm 間隔に配置 した。孔の直径は、骨材に最大寸法25mmの砕石を用 いたため、コンクリート打設時に砕石が孔に注入され るように \$30mm とした。UFC パネル設置後、コア 内にコンクリート打設時に直接コンクリートを注入 させて連結する場合(図-4 (1))、コア内に UFC で 製作した円形棒 (SS400、 φ 30mm) を挿入して連結 する場合 (図-4 (2))。コア内に丸鋼 (φ30mm) を 挿入して連結する場合(図-4 (2))の3タイプの材 料を用いて、疲労耐久性を評価する。なお、UFC 円 柱および丸鋼はエポキシ系の接着剤で接着させた。

4. 実験方法

4.1 走行疲労実験 走行疲労実験は、輪荷重を供 試体中央から±450mm の走行範囲で繰返し走行さ せる実験である。この走行範囲は、輪荷重が 45° で床版の底面方向に分布すると仮定し、床版支間 内に輪荷重が分布するものとして定めた。次に、 本供試体は実道路橋の1/2モデルとしたことから、 設計活荷重 100kN の 1/2 の 50kN に安全率 1.2 を考 慮した 60kN を基準荷重とする。荷重は荷重 100kN

供試体	等価走行回数 (回)	平均等価 走行回数 (回)	等価走行回数比 U.RC/RC
RC-FR-1	7,347,504	7,938,687	-
RC-FR-2	8,529,870		
U.RC-FR-1	35,727,812	41,980,907	5.29
U.RC-FR-2	48,234,001		
U.RC-FR-J1	229,443,344	229,443,344	28.90
U.RC-FR-J2	411,761,165	411,761,165	51.87
U.RC-FR-J3	549,679,168	549,679,168	69.24

表-1 等価走行回数

までは 2 万回走行毎に 20kN ずつ、荷重 100kN からは 10kN ずつ増加させる段階荷重とする。走行 平均速度は 1 走行距離 900mm を 6.5sec で走行さ せる 0.14m/s とする。ここで、通常の型枠を用い た RC 床版供試体を RC-FR、継手部を設けていな い UFC パネル RC 床版供試体を U.RC-FR、継手部 付き UFC パネル RC 床版供試体を U.RC-FR-J と称 する。

5. 実験結果および考察

5.1 等価走行回数 本実験における走行疲労実 験は段階荷重を採用したことから、等価走行回数 は、マイナー則に従うと仮定し、式(1)を用いて算 出した。

$$N_{ep} = \sum_{i=1}^{n} (P_i / P)^m \times n_i$$
(1)

ここで, *N_{ep}*: 等価走行回数(回)、*P_i*: 載荷荷重(kN)、 *P*: 基準荷重(=60kN)、*n_i*: 荷重 *P_i*の走行回数(回)、 *m*: 松井らが提案する S-N 曲線 ⁵⁾の傾きの逆数 (=12.7)とする。

式(1)より算出した等価走行回数を表-1に示す。表 -1より、RC-FRの平均等価走行回数は7,938,687回で ある。U.RC-FRの平均等価走行回数は42,002,356回 であり、RC床版の5.29倍となった。次に、軸方向の 支間中央に継手部を設けて、φ30mmのコア内にコン クリートを注入した供試体U.RC-FR-J1、UFC棒を挿 入した供試体 U.RC-FR-J2、鋼棒を挿入した供試体 U.RC13-FR-J3の等価走行回数は、それぞれ 229,443,344回、411,761,165回、549,679,168回である。

供試体 RC-FR と供試体 U.RC-FR-J1,2,3 の等価走行回 数を比較すると、それぞれ 28.90、51.87、69.24 倍と なった。したがって、UFC パネル RC 床版は疲労耐 久性に優れた構造であることが実証された。 ϕ 30mm のコアに挿注入される材料のせん断強度は、供試体 U.RC-FR-J1 に注入したコンクリートのせん断強度は 5.7N/mm² (f_{cv0} =0.688f_c^{0.610}、 f_c :コンクリートの圧縮 強度(=32N/mm²))となる。また、供試体 U.RC-FR -J2 には UFC 棒を挿入したことから UFC の一面せん 断試験を行った結果、せん断強度は 23.0N/mm² であ った θ 。次に、供試体 U.RC-FR-J3 は、SS400 の丸鋼

図-5 たわみと等価走行回数の関係

を使用したことから鋼材のせん断強度は $80N/mm^2$ で ある。よって、単せん断強さ ($\rho_c = \tau A_c$ 、 τ : コアに挿 入される材料のせん断強度 (N/mm^2)、 A_c : 挿入材料 の断面積 (mm^2))は、供試体 U.RC-FR-J1 が 40.3N、 供試体 U.RC-FR-J2 は 162.4N、供試体 U.RC-FR-J3 は 565.2N となる。したがって、挿注入される材料のせ ん断強度の差によって疲労耐久性能に大きく影響す る結果となった。本実験では、全供試体ともに 300mm 間隔で継手部を設けたが、継手部に挿注入する材料や 間隔の検討が必要となる。

5.2 等価走行回数とたわみの関係 たわみと等価 走行回数の関係を図-5に示す。供試体RC-FR-1.2は、 等価走行回数の増加に伴いたわみも増加し、走行回数 7.73×10⁵回からたわみの増加が著しい。終局時のたわ みは、それぞれ 6.9mm、7.3mm である。供試体 U.RC-FR-1,2 は、ともに終局時付近まで等価走行回数 の増加に伴い緩やかにたわみは増加し、終局時のたわ みは供試体 U.RC-FR-1,2 で、それぞれ 6.5mm、6.9mm である。次に、供試体 U.RC-FR-J1,2,3 は、等価走行回 数の増加に伴い緩やかにたわみは増加し、走行回数 5.80×10⁷回付近から急激なたわみの増加が著しく、終 局時のたわみは供試体 U.RC-FR-J1,2,3 で、それぞれ 4.5mm、4.8mm、4.7mm である。なお、U.RC-FR およ び U.RC-FR-J は RC-FR に比して、各等価走行回数に おけるたわみの抑制が著しい。これは、UFC パネルの 曲げ剛性が高いことからたわみが抑制されたものと考 えられる。また、U.RC-FR-JはU.RC-FR に比してたわ みが抑制されている。これは、U.RC-FR-J は重ね継手 構造としたことにより、U.RC-FR に比べて中央部の床 版厚が20mm厚くなっているため、さらに曲げ剛性が 向上し、たわみが抑制されたと考えられる。

5.3 破壊状況 本実験における破壊状況の一例 を図-6 に示す。供試体 RC-FR は、ひび割れは軸 直角方向および軸方向に鉄筋間隔とほぼ同じ寸法 100mm~120mm 間隔で格子状に発生している。最 終的には、輪荷重が走行中に押抜きせん断破壊と なった。供試体 U.RC-FR の破壊状況は、輪荷重が 走行する範囲にひび割れが密集し、全体に微細な ひび割れが発生している。最終的な破壊モードは、

1) U. RC-FR

2) U. RC-FR-J1 図-7 断面方向の供試体破壊状況一例

3) U. RC-FR-J2

輪荷重が走行中に RC 部が押抜きせん断破壊と同 時に合成面がはく離した。供試体 U.RC-F-J には、 継手部を設けた中央付近に微細なひび割れはみら れず、軸方向に曲げ引張力によるひび割れが発生 している。これは、重ね継手部のコア内に挿注入 したコンクリート、UFC 棒、鋼棒のいずれの供試 体も同様なひび割れ状況である。また、輪荷重が 折り返す付近では微細なひび割れが発生してい る。RC 床版部は押抜きせん断破壊となり、UFC の継手部は曲げ破壊となった。次に、各供試体の 断面方向の破壊状況の一例を図-7に示す。供試体 **U.RC-FR** は、ほぼ 45°の合成面が押抜きせん断破 壊によってはく離している。次に、継手部のコア 内にコンクリートを注入した供試体 U.RCFR-J1 は、曲げ引張力によって重ね継手の単せん断面で コンクリートがせん断され、上部の UFC パネルと 下部の UFC パネルが軸直角方向にずれを生じて いる。また、UFC 棒を挿入した供試体 U.RC-FR-J2 は、単せん断面で UFC 棒がせん断されているもの の大きなパネルのずれはみられない。コア内に鋼 棒を挿入した供試体 U.RC-FR-J3 は、鋼材を用い たことからせん断強度が大きく単せん断面でせん 断されることがなく破壊時まで形状を保ってい る。したがって、施工における合理化を考慮する ならば、RC 床版コンクリートを打設時に、直接 コア内にコンクリート注入させる方法が適切であ ると考えられる。この場合は、重ね継手の断面に 生じる軸引張力からコアのサイズおよび間隔を決 定する必要がある。

6. まとめ

①等価走行回数は、RC 床版に比して、UFC パネ ル RC 床版で 5.29 倍、継手部付き UFC パネル RC 床版で継手部に設けたコアにコンクリート、UFC 棒、鋼棒を挿注入した供試体はそれぞれ、28.90、 51.87、69.24倍となった。

②等価走行回数とたわみの関係から、各等価走行 回数における UFC パネル RC 床版のたわみは RC 床版のたわみを下回っている。したがって、UFC パネル RC と RC 床版を合成したことにより曲げ 剛性が向上し、たわみの増加が抑制された。また、 継手部付き UFC パネル RC 床版は UFC パネル RC 床版に比してたわみの増加が抑制されている。す なわち、コンクリート、UFC 棒、鋼棒を挿注入す ることにより曲げ引張力に抵抗する構造となり、 疲労耐久性が向上した。

③UFC パネル RC 床版は、輪荷重の接地面から 45° の傾斜角で押抜きせん断破壊となり、合成面では ダウエル効果が及ぼす範囲に微細なひび割れが密 集し、はく離破壊となっている。また、継手部を 設けた UFC パネル RC 床版は継手部で曲げ引張破 壊となり、鋼繊維の架橋効果がみられた。

④継手部付き UFC パネル RC 床版は、RC 床版お よび継手部を設けなかった UFC パネル RC 床版と 同等以上の疲労耐久性を保有しているため、継手 部が弱点部とならないことが実証された。

参考文献

1) 財団法人土木研究センター:建設技術審査報告 書,ダクタルフォーム.2)牧隆輝,田中敏嗣、阿 部忠,木田哲量: RPC 埋設型枠を用いた RC はりの 載荷試験、コンクリート工学年次論文集, Vol27, No1, pp.289-294, 2009. 3) 阿部忠, 木田哲量, 新 見彩, 高野真希子, 田中敏嗣: UFC 埋設型枠 RC 床版の合成面のせん断強度および理論押抜きせん 断耐力式, 構造工学論文集, Vol.55A, pp.1478-1496, 2005.4)(社)日本道路協会:道路橋示方書·同解 説I, II, 2005.5) 松井繁之: 道路橋床, 設計・施 工と維持管理, 森北出版株式会社, 2007.6) 阿部忠, 木田哲量,徐銘謙,澤野利章:道路橋 RC 床版の押 抜きせん断耐荷力評価式に関する研究,構造工学論 文集, Vol.53A, pp.199-207, 2007.