変調アドミッタンス法及び C-V 法による MIS 界面準位の評価

日大生産工(院) 0小林浩二、石橋大典 日大生産工 清水耕作

1. はじめに

現在、LSI(大規模集積回路)は、パソコン、 携帯電話など身の回りの電子機器の殆どに使 用されている。その LSI の製造では多数の MOSFET(金属・酸化膜・半導体電界効果トラン ジスタ)が使用されている。また、ジャイアン トエレクトロニクスに代表される液晶ディス プレイ (LCD)やプラズマディスプレイ (PDP) では、非晶質シリコンや多結晶シリコン膜を用 いた薄膜トランジスタが多く使われている。大 面積にわたって無欠陥で信頼性の高い薄膜ト ランジスタを作製することは非常高い技術が 要求されている。

本研究では、MOSFET の性能を評価する上 で、重要な MIS 界面の欠陥密度の評価を Terman 法および変調アドミタンス法を用い て行った。材料は結晶シリコン(100)および熱 酸化膜を用いた。

2. 実験方法

試料の断面構造を Fig. 1 に示す。上下の電
 極としてクロムを 100nm、抵抗加熱蒸着法に
 て作製した。また、Terman 法の評価では高周
 波は 10MHz を用い、また、低周波側は Quasi
 Static 法を用いた。測定図を Fig. 2 に示す。
 変調アドミタンス法では、周波数を 10⁴から
 107 Hz までを評価した。

Fig. 2 Experimental setup for C-V measurement system.

Evaluation of the Defects of MIS Interface by the modulated Admittance Method and $$\rm C\-V$ Method

Kohji KOBAYASHI, Daisuke Ishibashi. and Kousaku SHIMIZU

2-1 C-V法

低周波電源と高周波電源の2つを用いて、 それぞれのC-V特性をグラフ化する。測定を 行う際に印加した電圧が高周波か低周波かで 容量に差が生じ、この差より界面準位密度の算 出を行う。この時得られた低周波時の最小容量 をCLF、その時の半導体中の容量をCs^Lとし、 高周波時の最小容量をC_{HF}、その時の半導体中 の容量をCs^Hとすると、

$$\frac{1}{C_{LF}} = \frac{1}{C_o} + \frac{1}{C_s^L} \to C_s^L = \left(\frac{1}{C_{LF}} - \frac{1}{C_o}\right)^{-1}$$
(1)

$$\frac{1}{C_{HF}} = \frac{1}{C_o} + \frac{1}{C_s^H} \to C_s^H = \left(\frac{1}{C_{HF}} - \frac{1}{C_o}\right)^{-1}$$
(2)

となり、界面準位による容量 Csは、

$$C_{S} = C_{S}^{L} - C_{S}^{H}$$
⁽³⁾

$$C_{s} = \left(\frac{1}{C_{LF}} - \frac{1}{C_{o}}\right)^{-1} - \left(\frac{1}{C_{HF}} - \frac{1}{C_{o}}\right)^{-1} \quad (4)$$

で求められ、界面準位密度 Dit は、

$$D_{it} = \frac{C_s}{q} \tag{5}$$

と表すことができる。

2-2 変調アドミッタンス法

高周波電源を用いて、試料に一定の印加電圧 を加えた状態で、広い周波数範囲でコンダクタ ンス Gp を測定する。このとき、得られたコン ダクタンスには界面準位による損失が含まれ ている。界面準位密度は周波数に依存する損失 成分なので、周波数分散を行うことにより、周 波数に依存しない損失成分を分離させ、界面準 位密度を求めることができる。これにより、印 加電圧に対する界面準位密度を求めることが 可能である。このときの測定結果より求まった コンダクタンスを等価並列コンダクタンス Gp/ωに置き換え、Gp/ω・周波数特性を求め る。この特性のピーク時の値を以下の式に代入 する。

$$\frac{G_p}{\omega} = \frac{e^2 D_{ii}}{2 \,\omega \tau_m} \ln(1 + \omega^2 \tau_m^2) \qquad (5)$$

e は素電荷、 τ_m は界面準位による時定数と する。この G_p/ω は $\omega \tau_m = 1.98$ の時にピーク 値を取るので、式を変形させることにより、界 面順位密度 D_{it} を求めることができる。

また、このとき熱放出速度 epT⁻²を求め、温 度に対する熱放出速度のアレニウスプロット を求めることができる。アレニウスプロットの 傾きより、界面準位の深さを算出することがで きる。

3. 実験結果

3-1 C-V法

Fig.3 は C-V 法の測定結果である。

Fig.3 C-V characteristic

高周波の最小容量は 3.30×10⁻¹¹[F]、低周波の 最小容量は 1.12×10⁻¹⁰[F]となった。酸化膜容 量は高周波の最大容量より 1.64×10⁻¹⁰[F]であ る。これらの値を式(1)、(2)に代入して計算を 行った結果、界面順位密度 Dit は 1.64× 10⁹[eV⁻¹cm⁻²]となった。

3-2 変調アドミッタンス法

試料には 0.5V のバイアスをかけて測定を行 った。Fig.4 はそれぞれ室温(25℃)、50℃、70℃ の Gp/ω-f 特性を示したグラフである。変調ア ドミッタンス法での評価は Fig.4 のピーク値 を用いて行う。

Fig.4 Gp/ ω – f characteristic

各特性のピーク値を式(3)に代入し、界面準位 密度 Dit を求める。今回の測定結果より、各特 性のピーク値は

室温(25℃)	$1.19 \times 10^{-11} [F]$
$50^{\circ}\!\mathrm{C}$	$1.55 imes 10^{-11} [F]$
70°C	$2.51 \times 10^{-11} [F]$

となり、界面準位密度は

室温(25℃)	$1.85 imes 10^8 [eV^{-1}cm^{-2}]$
$50^{\circ}\mathrm{C}$	$2.41 \times 10^{8} [eV^{-1} cm^{-2}]$

70°C $3.90 \times 10^{8} [eV^{-1}cm^{-2}]$

となった。また、室温(25℃)、50℃、70℃での ln(ep/T⁻²)-1/T 特性を Fig.5 に示す。この特性の 近似直線より計算した結果、界面順位の深さは 0.22 [eV]となった。

Fig.5 f/T²- 1/T characteristic

4. まとめ

C-V 法では低周波と高周波の特性を得ることはできたが、高周波と低周波とで酸化膜の容量(Capacity の最大値)に違いが生じており、高精度な測定結果は得られなかった。

変調アドミッタンス法では印加電圧 0.5[V] をかけたとき、界面準位は 0.22[eV]とやや深 い位置にあることがわかった。また、温度が高 くなると MOS ダイオードのコンダクタンス が増加することがわかった。このことから、周 囲の温度が高くなると MOS ダイオードの性 能は低下することがわかった。

今後は、C-V 測定を行う上で、試料に加える 針圧や周囲の温度などによる影響を受け難く するために装置をさらに改良し、C-V 特性の温 度特性が得られるようにしたい。また、変調ア ドミッタンス法では SiO₂-Si 以外の MOS ダイ オードでも特性を調べ、比較検討を行う予定で ある。

参考文献

- 1) S.M.Sze 「半導体デバイス 基礎理論と
- プロセス技術 第2版」 産業図書
- 2) 河東田隆 「半導体評価技術」 産業図書
- 中村由崇 多結晶 Si 膜の粒界キャラクタ リゼーション
- 4) マルハン ラジュシュ クマール シリ
- コンカーバイドパワーMOSFETs