### 多値変調波の高効率電力増幅の検討

### 1. はじめに

16値直交振幅変調(16QAM)等の多値変調 は1シンボル当りの情報量が多く1度に多くの 情報が伝送可能となり,周波数の有効利用が できる.その反面,被変調波の振幅変動が大 きくなるため電力増幅器(HPA)に高い線形性 が要求され,線形性確保のため出力をバックオフ する結果,電力増幅効率が低下する課題があ る.

この問題を解決する方法として空間重畳型 多値変調が提案されている<sup>(1)~(4)</sup>. 複数の4相 変調(QPSK)信号を独立した複数の電力増幅 器で個別に高効率増幅後,空間で重畳合成し M値QAM信号を生成する方式である. QPSK は振幅がほぼ一定であることから,QAMと比 べ,HPAを効率の良い非線形領域近傍で動作 させることが可能となる.

しかしながら, HPAを効率の良い非線形領 域で動作させるとスペクトラムが広がり帯域制限 効果が低下する欠点がある.

そこで本研究では、HPAの高効率動作と同時に送信波形の帯域制限を実現する方法として、変調波の位相遷移を制限したOQPSK2波を用いた空間重畳型16QAM通信システム<sup>(5)-(8)</sup>を提案し、従来方式との比較検討を行った。

### 2. 多値変調通信システムの概要

### 2.1 通信システムの概要

Fig.1に通信のシステム構成を示す.まず, ディジ タル信号を変調(Mod)し,その後フィルタ(Filter)によ って送信波形を整形し,電力増幅器(HPA)に よって増幅し,送信する.受信側ではフィルタで 再度フィルタリングを行い復調(Demod)してディジタ ル信号を取り出す.

### 2.2 電力増幅器の非線形特性

ワイヤレス通信において,送信機の最終段に位置するHPAでレベルを高め,アンテナから送信する





## Fig.1 Conventional wireless communication system

(Fig.1参照).送信機器の中で、HPA消費電力の 占める割合が大きく、HPAの効率が全体の消 費電力を決定している.

Fig.2(a)に一般的なHPAのAM-AM特性なら びに効率,(b)にAM-PM特性を示す.入力レベル Pin の増加にしたがい,出力レベル Pout の増加 と位相が回転することを示している.さらに, 飽和点近傍で効率が最大になることがわか る.また,動作点を下げること(バックオフ)により, 効率が低下するが,線形特性が改善されるこ とがわかる.このため高効率動作と非線形特 性のトレードオフからHPAの動作点



Fig.2 Typical HPA characteristics

A Study on Efficient Power Amplification of M-ary Modulation Signal

Hiroyasu MADATE and Masayoshi TANAKA

が決定される.

伝送特性を解析する上で,この非線形特性 である振幅圧縮と位相回転を考慮した.

### 2.3 多値変調システムの特徴

Fig.3(a)に16QAMの信号空間配置, (b)に 16APSKの信号空間配置を示す.

M値のシンボルを使用するM値(M-ary)通信は, 1シンボルが log2M ビットの情報量を伝送するた め伝送容量を高める上で効果的である.しか しながら,信号空間での各シンボル間の距離が接 近する結果,熱雑音,非線形歪みに対する耐 性が低下するため,大きな送信電力,利得の 大きなアンテナを必要とする.QAM,APSKには 高い線形性が要求されるため電力効率が低下 する欠点があり,これまでのワイヤレスシステムでは, 伝送速度,帯域幅と送信電力について各性能 のトレードオフを行い,一定の振幅で搬送波の位相 のみを変化させるQPSK方式を採用するシステム が多い.



Fig.3 M-ary signal constellation

### 2.4 4相変調の比較

Fig.4にQPSKとOQPSKの信号点遷移を示 す.QPSKは位相の遷移に原点を通過する場合 Fig.4があるため振幅変動が大きい.そのため 非線形領域での増幅は帯域制限効果を低下さ せる.

一方OQPSKは、変調ベースバンド信号が互い に1/2シンボルだけ時間的にオフセットしている.この ため同相・直交成分の極性が同時に変化せず、 搬送波位相が変化する場合には必ず±  $\pi/2[rad]$ の位相変化が生じ、位相遷移上原点 を通らない.従って、OQPSKはQPSKより振 幅変動を小さくすることができる.

### 2.5 電力増幅器の入力振幅変動

QAMなどの変調波はRF(キャリア)信号の振幅, 位相が信号に応じて変化している(Fig.5参 照). すなわち, I-Q信号に応じてRF信号の包 絡線が変動している.この包絡線に従って瞬 時振幅が変化し,各瞬間の瞬時入力電力にお けるAM-AM/PM特性に応じて瞬時出力電力



(b)OQPSK

Fig.4 Signal constellation and trajectory





# Fig.5 Signal envelope of roll-off filtered modulation wave

と位相が決まる.瞬時入力電力が大きくなる と瞬時出力電力が飽和し,変調波の包絡線が 歪む.また,Fig.5より16QAM とOQPSKの包 絡線を比較した場合,OQPSKの方が振幅変動 が小さいことがわかる.

Table1はそれぞれの平均電力とピーク電力の 比であるPAPR(Peak to Average Power Ratio)の

Table1 Comparison of peak to average power

| rano |  |
|------|--|

|        | PAPR [dB] |  |  |
|--------|-----------|--|--|
| OQPSK  | 3.5       |  |  |
| QPSK   | 3.8       |  |  |
| 16QAM  | 6.6       |  |  |
| 16APSK | 5.2       |  |  |

値を示す. PAPRはx(t)を信号波としたとき, 以下の式で与えられる.

$$PAPR = 10 \log \left[ \frac{\max\left\{ x(t)^2 \right\}}{\max\left\{ x(t)^2 \right\}} \right] \quad [dB]$$

OQPSK変調波ではPAPRの値は3.5[dB], QPSK変調波は3.8[dB], 16QAM変調波は 6.1[dB], 16APSK変調波は4.7[dB]と, OQPSK 変調波は他の変調波に比べてPAPRが一番小 さくなることがわかる.

電力増幅時,飽和電力近傍で急激に歪む. そのためPAPRの値が小さいほど,効率の良い 飽和点近傍でHPAを動作させることが可能と なる.

### 3 空間重畳型多値変調システム

### 3.1 システム構成

空間重畳型16QAMシステムの構成をFig.6に示 す.Fig.6に示すようにレベルが 6[dB] 異なる2 つのOQPSK変調波をHPAで個別に増幅後, アン テナにより空間重畳合成することで16QAM変 調波を生成する<sup>(1)</sup>.OQPSKは振幅変動が小さ いことから,QAMと比べ,HPAを効率の良い 非線形領域近傍で動作させることが可能とな る.



# Fig.6 Principle of spatially superposed 16QAM modulation system

### 3.2 空間重畳合成の課題

空間重畳合成時に,同一周波数の2つの信 号波で振幅・位相が異なると重畳誤差となり,



Fig.7 Configuration of 2-beam superposition with phased array system

性能劣化が発生する.したがって,空間重畳 誤差の小さいフェイズドアレイが求められる.

Fig.7に空間重畳用アレイアンテナシステムの構成を示 す.同心円状に素子を配置したアレイアンテナで構成 される.両ビームとも二重円上の6つの素子で 構成され、△および◇で示す素子から各々の ビームが放射される.同一円周上の素子間隔は 互いに等しく、また、アンテナ素子ビームの基準点 は円の中心であり、2ビームの基準点が等しい. これにより2ビーム間の重畳誤差を小さくす

これにより21-4前の単重缺差を小さくり ることができる<sup>(4)</sup>.

### 4 空間重畳型多値変調の評価<sup>(6)</sup>

空間重畳型多値変調通信システムの実証実験を 行った.さらに,BER(Bit Error Rate)特性, スペ クトラム特性, PAPRと消費電力をそれぞれ解析に よる評価で従来方式との比較を行った.

Fig.8に解析に用いた評価システムの構成を示 す.比較対象として従来の変調方式である 16QAMと16APSKを用いた.HPAのAM-PMに よる位相回転を考慮し,HPAの入力前で位相 調整(Phase Rotation)を行った.また,高効率 動作を実現するため,HPAを非線形領域で動 作させ,同一のAWGN(Additive White Gaussian Noise)で同じビット誤り率になるようにバックオフ させて,このときのHPAで消費される電力を 解析した.

なお, HPAは一般的な特性であるFig.2のも のを用いた.

### 4.1 空間重畳実証実験

6[dB]レベルの異なる2つのOQPSK変調波を 2台の発振器により送信,空間で合成する. 離れた場所で信号を受信し,受信データを確認



Fig.8 Analytical system of spatially superposed 16QAM



Fig.9 Experimental result of spatial superposition

#### した.

受信データは16QAMの信号空間配置を示しているのがわかる.

### 4.2 BER特性

Fig.10は従来方式である16QAM, 16APSK と今回提案する空間重畳型16QAMのBER特 性を示す. 3方式ともHPA動作点を同一とし ており、本システムはHPAによる非線形歪の影響 を受けにくいことを示している.



### 4.3 スペクトラム特性

上記4.2同様, HPA動作点を同一としたときの スペットラム特性を評価した.その結果をFig.11に 示す.本システムは位相遷移の特異性や全体のが イナミックレンジ、が小さいことから,非線形増幅時で もスペックトラムの拡大を抑制できることを示して いる.





### 4.4 PAPRと消費電力の比較

Table2は従来方式(16QAM,16APSK)と本システムで ある空間重畳型16QAMのPAPRと出力バックオフ (OBO), 消費電力の比較を示している. 消費電力 は空間重畳型16QAMを 1 としたときの比率で 示している.

空間重畳型16QAMのPAPRは 3.5[dB] であり 従来方式より低減しているのがわかる.また,同 じビット誤り率としたとき,出力バックオフは従来方式 では16QAMが 5.1[dB],16APSKが5.9[dB] 必要 となる.一方,本ジステムでは1.5[dB] でよい.消費 電力は本ジステムを 1 とすると従来方式では約2倍 の電力が消費されることとなり,従来方式より低 消費電力化を実現できる.

| _                   |      | _    |             | _    |
|---------------------|------|------|-------------|------|
|                     | PAPR | OBO  | Consumption | D/U  |
|                     | [dB] | [dB] | Power       | [dB] |
| OQPSK+OQPSK         | 3.5  | 1.5  | 1           | 35.0 |
| QPSK+QPSK           | 3.8  | 1.5  | 1           | 25.0 |
| Conventional 16QAM  | 6.1  | 5.1  | 1.91        | 37.0 |
| Conventional 16APSK | 4.7  | 5.9  | 2.21        | 39.0 |

Table2 Comparison of HPA power consumption

### 6 まとめ

本研究では、レヘ゛ルが 6[dB] 異なる2つの OQPSK変調波をHPAで個別に増幅後、アレイアンテナに より空間重畳合成して16QAM変調波を生成する 多値変調方式を提案した.そして、実証実験によ り本空間重畳型多値変調システムの実現性を明らか にした.

さらに、HPAの消費電力を検討し、その結果ほぼ同一条件(AWGN,BER)において、従来方式より 消費電力を約50%低減、かつスペットラムの拡大を抑 制できることを明らかにした.

今後は,32,64QAM等の多重度の大きい空間重 畳型多値変調の実現性を検討し,消費電力の比較 検討を行う.

### 参考文献

- 1)M.Tanaka,AIAA ICSSC2003,AIAA-2003-2288, 2003, April.
- 2)田中,シミュレーション,第24巻1号pp75-82, 2005
- 3)M.Tanaka,AIAA,ICSSC2005,I000249,2005,Sept
- 4)M.Tanaka,T.Eguchi,,AIAA,

ICSSC2006,AIAA-2006-5347,2006, Jun 5)M.Tanaka, H.Madate, AIAA

- ICSSC2010 ,AIAA-8681-317,2010,Aug
- 6)間舘,田中,第42回日本大学生産工学部学術講 演会,2-23,2009

7)間舘大泰,田中將義,信学総全大,B-3-21,2009 8)間舘大泰,田中將義,信学ソサエティ,B-3-32,2010 9)間舘大泰,田中將義,信学総全大,B-3-7,2010