日大生産工(院) ○曽我 有奈 日大生産工 景山 一郎

1. まえがき

車両の設計,性能評価,事故原因の調査などを行う際に, 車両の詳細な運動解析を行うことで、その要因を探ることが できる.近年の車両の運動特性に関する研究では、幾何学 的な瞬間回転中心軸を車両の仮想の回転軸として設定し、 その軸回りに車両が回転するとした「ロール軸」を利用した 研究が多く進められてきた 1).この解析により,運動の自由 度を制限することができるため、モデルを簡略化することが できる.また,近年では,藤岡 26が断面一輪モデルによる 解析を行っている.しかし,以上の解析では,ばね下部分を 剛体と扱っており、タイヤの上下方向の変形等に起因するロ ール角成分やタイヤの接地面の変形等は通常無視される. さらには、サスペンション内での力の伝達などによるジャッキ アップ現象等のばね下での運動が明らかではない.このよう な理由からばね下での車両挙動が明らかとなれば,設計や 解析の面で有利となる他, 四輪独立操舵システムへの新た な展開等の可能性も考えられる.

本研究では、ロール軸による運動性能評価ではなく、サス ペンション機構および部材に着目して方程式を立て、ばね 下の影響等を詳細に解析することを目的とした.

この第一段階として、サスペンションの基本的な運動を記 述するため、車体を前後に切断した2輪モデルを用いた基 礎解析に着目し、ロール運動の基礎について検討した. これを念頭に、サスペンションを有する単純化した理論モデ ルを構築した.次に左右独立操舵による、ロール運動に与 える影響について検討を行った.

2. モデル

モデルには前後二輪に切断した簡単なダブルウィッシュ ボーン型の車両を採用した. 座標系は ISO 座標系を採用し, 原点は右後輪接地面に設置した. また, 今回は定常状態を 扱うこととする.

2.1. 幾何学的拘束

車体とアームの結合点,アームとタイヤの結合点,車体重 心点,左右タイヤの重心点を原点からの位置ベクトルとして 扱い,車体の構造に起因する幾何学的拘束を与える.左右 輪と車体部について、それぞれの位置ベクトルを設定した 後、ロール角、左右キャンバ角、水平からのアームの傾きを

Fig.1 Suspension geometry

$\theta_b, \theta_r, \theta_l, \phi_1, \phi_2, \phi_3, \phi_4, \gamma_1, \gamma_2$ として、座標変換を

行った. Fig.1 にモデルの各点,各角度を示す.式(1)~(5) は右タイヤ・右タイヤ側アーム,式(6)~(10)は左タイヤ・左タ イヤ側アーム、式(11)は原点から車体重心点,(12)~(15)は 車体部における定常状態での位置ベクトルである.原点か

ら車体重心点までのY、Z座標を G_y , G_z として仮定した.

Table .1 に今回の計算で使用した諸元を示す.

 $R_{01} = (0 \cdot \text{ex} - \sin\theta \text{r} \cdot \text{ey} + \cos\theta \text{r} \cdot \text{ez}) \cdot (r02 + r21) \quad (1)$

 $R_{02} = (0 \cdot \text{ex} - \sin\theta r \cdot \text{ey} + \cos\theta r \cdot \text{ez}) \cdot r02$ (2)

 $R_{0G_{r}} = (0 \cdot \text{ex} - \sin\theta \mathbf{r} \cdot \text{ey} + \cos\theta \mathbf{r} \cdot \text{ez}) \cdot (r02 + r2Gr) (3)$

 $R_{13} = (0 \cdot \text{ex}0 + \cos\phi_1 \cdot \text{ey}0 + \sin\phi_1 \cdot \text{ez}0) \cdot \text{r13}$ (4)

$$R_{24} = (0 \cdot \text{ex}0 + \cos\phi_2 \cdot \text{ey}0 + \sin\phi_2 \cdot \text{ez}0) \cdot \text{r}24$$
 (5)

$$R_{56} = (0 \cdot \text{ex} - \sin\theta_1 \cdot \text{ey} + \cos\theta_1 \cdot \text{ez}) \cdot (r57 + r76) \quad (6)$$

$$R_{57} = (0 \cdot \text{ex} - \sin\theta_1 \cdot \text{ey} + \cos\theta_1 \cdot \text{ez}) \cdot \text{r}57 \tag{7}$$

$$R_{5G_1} = (0 \cdot \text{ex} - \sin\theta_1 \cdot \text{ey} + \cos\theta_1 \cdot \text{ez}) \cdot (r57 + r7\text{Gl})(8)$$

$$R_{68} = (0 \cdot \text{ex}0 - \cos\phi_3 \cdot \text{ey}0 - \sin\phi_3 \cdot \text{ez}0) \cdot \text{r68}$$
(9)

$$R_{79} = (0 \cdot \text{ex}0 - \cos\phi_4 \cdot \text{ey}0 - \sin\phi_4 \cdot \text{ez}0) \cdot \text{r}79 \qquad (10)$$

Fundamental study on characteristics of rolling for passenger car

Arina SOGA and Ichiro KAGEYAMA

$$R_{0Gb} = 0 \cdot \mathrm{ex} + G_Y \cdot \mathrm{ey} + G_Z \cdot \mathrm{ez} \tag{11}$$

$$R_{G_{b},3} = \mathbf{R}_{0\mathrm{Gb}} + \frac{0 \operatorname{ex-}(r34 \cdot \sin\theta_{b} + r38 \cos\theta_{b}) \cdot \operatorname{ey+}(r34 \cdot \cos\theta_{b} + r38 \sin\theta_{b}) \cdot \operatorname{ez}}{2}$$
(12)

 $R_{G_{b,4}} = R_{0Gb} + \frac{0 \cdot ex \cdot (r34 \cdot sin\theta_{b} + r49 \cdot cos\theta_{b}) \cdot ey - (r34 \cdot cos\theta_{b} + r49 \cdot sin\theta_{b}) \cdot ez}{2}$ (13)

$$R_{G_b8} = R_{0Gb} + \frac{0 \cdot ex + (r89 \cdot \sin\theta_b + r38 \cdot \cos\theta_b) \cdot ey + (r89 \cdot \cos\theta_b + r38 \cdot \sin\theta_b) \cdot ez}{2}$$
(14)

 $R_{G_b9} = R_{0Gb} + \frac{0 \cdot ex + (r89 \cdot \sin\theta_b + r49 \cdot \cos\theta_b) \cdot ey - (r89 \cdot \cos\theta_b + r49 \cdot \sin\theta_b) \cdot ez}{2}$ (15)

Table.1 Specification sheet

r02	[mm]	144.25
r21	[mm]	234.5
r2Gr	[mm]	117.25
r13	[mm]	284.68
r24	[mm]	309.1
r34	[mm]	202.24
r57	[mm]	144.25
r76	[mm]	234.5
r68	[mm]	284.68
r79	[mm]	309.1
r89	[mm]	202.24
r7Gl	[mm]	117.25
r38	[mm]	494
r49	[mm]	434
φ1	[rad]	-0.2096
φ2	[rad]	-0.0802
φ3	[rad]	0.2096
φ4	[rad]	0.0802
mr	[kg]	9
ml	[kg]	9
mb	[kg]	75.04

以上を用い、左右輪が路面から離れないことを条件として原 点から各点までの位置ベクトルを規定した.

2.2. 力学的拘束

今回の条件は、先にも述べたように定常状態を考える.

車体、タイヤの接点がピロボールになっているため、軸力 のみの受け渡しとなり、タイヤで発生した力を内力として車 体部へと伝達することができる.式(16)~(19)はFig.1 中の点 0,1,2,Gr における力をベクトル的に表したものである. Fig.2 に各点の力の向きを示した.実際、摩擦係数はタイヤ反力・ 横すべり角・キャンバスラストの関数であるが、今回は、等価 摩擦係数として扱った.

 $F_1 = (0 \cdot \mathrm{ex} + \cos\phi_1 \cdot \mathrm{ey} + \sin\phi_1 \cdot \mathrm{ez}) \cdot \mathrm{f13} \quad (16)$

$$F_2 = (0 \cdot \operatorname{ex} + \cos \phi_2 \cdot \operatorname{ey} + \sin \phi_2 \cdot \operatorname{ez}) \cdot f24 \ (17)$$

+ $(0 \cdot ex - \cos \gamma_1 \cdot ey - \sin \gamma_1 \cdot ez) \cdot f23$

$$F_{G_r} = 0 \cdot \text{ex} - \text{mr} \cdot \text{ay} \cdot \text{ey} - \text{mr} \cdot \text{g} \cdot \text{ez}$$
(19)
(19)

$$F_0 = 0 \cdot \text{ex} - \text{Nr} \cdot \mu \cdot \text{ey} - \text{Nr} \cdot \text{ez}$$

また、 f_{23} はばね力になるので、式(20)と表すことができる. $f_{23} = k_r \cdot (r23 - r230)$ (20) これを左右輪それぞれについて行い、算出した内力

 f_{13}, f_{24}, f_{23} を反転させて車体部へと展開し、車体系に ついての Y,Z 方向のつり合い式、車体重心点回りのモーメ ントのつり合い式を式(21)~(23)に示す.

$$F_{by} = f_{13} \cos \phi_1 - f_{23} \sin \gamma_1 - f_{24} \cos \phi_2$$
(21)
- $f_{ex} \cos \phi_2 + f_{28} \sin \gamma_2 - f_{24} \cos \phi_4 - m_b \alpha_y$

$$F_{bz} = -f_{13}\sin\phi_1 - f_{23}\cos\gamma_1 - f_{24}\sin\phi_2$$
(22)
$$-f_{68}\sin\phi_3 - f_{78}\cos\gamma_2 - f_{79}\sin\phi_4 - m_bg$$

$$M_{bx} = r_{G_b3} \times F_3 + r_{G_b4} \times F_4 + r_{G_b8} \times F_8 + r_{G_b9} \times F_9$$
(23)

3.結果

未知数は G_v, G_r, θ_b の3つとし収束計算をさせた. (Fig.3)

Fig.3 Convergence point

Fig.3 より第一段階である定常状態でのつり合いを確認する ことができた. 今後,以上の式をもとに左右輪の横力の違い によるロール運動の検討を引き続き行う. 「参考文献」

(1)安部正人:自動車の運動と制御,東京電機大学出版局,2008
(2)藤岡健彦 ほか:自動車の断面一輪モデルとその特性,自動車技術会学術講演会前刷集 No.91-10, p.19-24 (2010)

(18)