CFRP 製アイソグリッド円筒殻の内圧特性

日大 生産工	○坂田憲泰
日大 生産工	邉 吾一
日産自動車	黒岩夏樹
日産自動車	榊田明宏

1. 緒 言

近年,走行時に CO₂ 排出量をゼロにすることがで きる電気自動車 (Electric vehicle, EV) や燃料電池自 動車 (Fuel cell vehicle, FCV) などのゼロ・エミッシ ョン車が注目されている. FCV では,1回の水素充填 での走行距離をガソリン車並みにするために,水素の 貯蔵圧力を 35MPa から 70MPa に高圧化させる取り組 みが行われている¹⁾.

著者らは過去の研究^{2)~4)}で,既存の炭素繊維強化プ $\overline{\partial}$ $\overline{\partial}$ $\overline{\partial}$ $\overline{\partial}$ (Carbon fiber reinforced plastics, CFRP) 製圧力容器の容器円筒平行部(胴部)に胴部外径より 小さい径に記憶させた形状記憶合金 (Shape memory alloy, SMA) を周方向巻きし, SMA の逆変態終了温 度(Austenite finished point, Af 点)以上での形状回復 効果を利用したタガ締め効果によって、圧力容器の破 裂圧力を向上させる事に成功した. また, FEM によ る解析結果は破裂試験結果と良く一致し、最適設計の ツールとして使用できることを示した. 更に, FEM を用いて計算した SMA ワイヤの使用量を可能な限り 少なく抑えながら最大限に破裂圧力を向上させる最適 設計の結果は実験結果と良く一致し、最適設計の妥当 性を証明した.しかし, SMA は高価な材料のため, 実用化に向けてはコストの問題を解決させる必要があ ろ.

アイソグリッド構造とは、正三角形の格子状の補強 材と表板から構成される軽量薄肉構造であり、特に軽 量化と強度が要求される航空宇宙分野に応用されてい る⁵⁾.金属製アイソグリッド構造の製造技術は確立さ れており、使用例にロケットのペイロードフェアリン グや燃料タンク部、ISS 日本実験棟「きぼう」の与圧壁 が挙げられる.著者らは、CFRP 円筒殻の内側を CFRP 製アイソグリッドで補強した円筒殻を3軸のフ ィラメント・ワインディング(Filament winding, FW) 装置で成形する方法を構築させ、圧縮試験をおこない、 アイソグリッド円筒殻が圧縮特性に有効であることを 示した^{6,7)}.

そこで、本研究では圧力容器の軽量化と低コスト化を目的に、FEM を用いて CFRP グリッドで補強した

圧力容器の内圧特性を評価した結果について報告する.

2. 解析モデル

2. 1 オリジナル容器

FEM 解析に用いた圧力容器(以下,オリジナル容器)は、フィラメント・ワインディング(FW)装置 でアルミニウム合金ライナーをCFRPで覆ったフルラ ップの複合容器で、α=88°(周方向巻き)の場合を フープ巻き、α≠88°の場合をヘリカル巻きと呼ぶ. オリジナル容器の概要を Table 1 に、オリジナル容器 の胴部の肉厚と CFRP の積層構成を Table 2 に示す. 解析モデルは解析時間の短縮のためフルモデルの 1/16 となる周期対称モデルとした.

2.2 一体型グリッド円筒容器

一般的に圧力容器は胴部から破裂するように設計さ れており、「アルミニウム合金ライナー・炭素繊維製 一般複合容器の技術基準」⁸⁾では設計確認試験・組試 験時の破裂試験の合格基準に破裂の起点は胴部である ことが明記されている.また、容器胴部は、内圧によ るドーム部(鏡部)の変形の影響が比較的少ないため, FRP に発生する応力をコントロールしやすい. この ため、ほとんどの FRP 製複合容器では、経験則に基 づき軽量化の目的に相反してドーム部の強度を胴部よ り 25%から 50%程度強くし、内圧による胴部の FRP に発生する応力がドーム部より高くなるように設計さ れている⁹⁾. そのため, CFRP グリッドで補強する部 位はオリジナル容器の胴部とした. グリッドはヘリカ ル巻き角度を 50°, グリッドの高さを 4.65mm, グリ ッド幅を 6mm とした. 解析モデルはオリジナル容器 同様にフルモデルの 1/16 となる周期対称モデルとし た (Fig.1) .

2.3 挿入型グリッド円筒容器

圧力容器を CFRP グリッドで補強するためには,圧 力容器の最外層にグリッドを巻くことが望ましい.オ リジナル容器の成形終了後に,自動ファイバープレス メント (AFP) 装置等を用いて,グリッドの層を成形 することも考えられるが,グリッドを巻くためだけに 新たな装置が必要となるため,製造費が高くなること

Characteristics of Internal Pressure of CFRP Cylindrical Shells Reinforced with Isogrid Kazuhiro SAKATA, Goichi BEN, Natsuki KUROIWA and Akihiro SAKAKIDA Table 1 Outlines of the original pressure vessel.

Volume	7.5 liter
Total length	504 mm
Length of cylinder part	343 mm
Outside diameter	172 mm
Thickness of cylinder part	7.88 mm
Liner	A6061-T6
Overwrap	Carbon/Epoxy

Fig.1 FEM Model of the grid pressure vessel. (Grid angle : 50°)

Table 2 Thickness and winding angles at the center of the original pressure vessel.

	AI liner	CFRP						
		1 layer	2 layer	3 layer	4 layer	5 layer	6 layer	7 layer
Thickness (mm)	2.03	1.17	0.78	0.78	0.78	0.78	0.78	0.78
Winding angle (°)	-	88	17	88	17	88	17	88

が懸念される.そのため、本研究では一体成形した CFRP グリッド容器(以下,一体成形グリッド容器) とは別に圧力容器と CFRP グリッド円筒殻を別々に成 形し,最後に CFRP グリッド円筒殻に圧力容器本体を はめ込む挿入型グリッド容器の検討を行った.挿入式 を用いる事で,特別な装置を使用することなく,FW 装置だけで CFRP グリッド容器が製造可能となる.ま た,挿入型グリッド容器のグリッド円筒殻最内層と圧 力容器本体の最外層間の距離は 0.1mm とした.

3. 解析方法

圧力容器の破裂圧力の予測を行うために,汎用有限 要素法プログラム ANSYS Ver. 12.0 を用いて FEM 解 析を行った.要素は,アルミニウム合金ライナーと CFRP 層には積層ソリッド Solid185 を用いた.圧力容 器とグリッドの接触には,ターゲット要素 Targe170 (容器最外層)とコンタクト要素 Conta173 (グリッ ド最内層)を用いた.挿入型グリッド容器では,内圧 の上昇に伴い圧力容器本体が膨張することで,圧力容 器本体とグリッド円筒殻が固定されると考えられるた め,FEM 解析では接触後,両者の間で滑りはなく,常 に結合状態となるように定義した.その結果,オリジ ナル容器で節点数 17589,要素数 14724,グリッド容 器で節点数 24706,要素数 21160 となっている.

解析条件は, 圧力容器のアルミニウム合金ライナー を弾塑性解析, CFRP 層を弾性解析とし, 境界条件は 周期対称拘束とした. Table 3 に解析で用いた弾性率 等の材料定数を示す.

4. 破裂圧力の予測方法

CFRP 製圧力容器は、内圧の上昇に伴って破断ひず

Table 3 Material properties.

Young's modulus	72.9	GPa
Poisson's ratio	0.31	
Modulus of elasticity		
Longitudinal	144	GPa
Transverse	7.40	GPa
Shear	4.90	GPa
Poisson's ratio		
Longitudinal	0.276	
Transverse	0.014	
	Young's modulus Poisson's ratio Modulus of elasticity Longitudinal Transverse Shear Poisson's ratio Longitudinal Transverse	Young's modulus72.9Poisson's ratio0.31Modulus of elasticity144Longitudinal144Transverse7.40Shear4.90Poisson's ratio10.276Longitudinal0.276Transverse0.014

みの小さい CFRP 層がアルミニウムライナーより先に 破断し、CFRP 層の欠如した状態では内圧に耐える事 ができなくなり圧力容器の破裂に至ると考えられる. また、CFRP の応力は、繊維の体積含有率が変わるご とに様々な値となるが、繊維方向のひずみで評価した 場合は、繊維の体積含有率の影響を受けないため破裂 圧力の予測が行いやすくなる¹⁰⁾.

したがって、圧力容器の CFRP 層の破損則には最大 ひずみ説を用いた.本解析では CFRP 層に生じる各ひ ずみ成分は繊維方向を基準とするひずみ成分に変換さ れ、それらのひずみが CFRP の破断ひずみである 15700 µ (1.57%) に達したときに圧力容器が破裂す るとみなした.

5. 解析結果

5.1 オリジナル容器

オリジナル容器の最内層の繊維方向ひずみの分布を Fig.2 に示す. Fig.2 の横軸は圧力容器の胴部中央から の距離で胴部中央を原点(0mm)とし、ドーム部と 胴部の遷移点(フープ巻き端部)が 171.5mm、ドー ム部と口金部の遷移点が 211.1mm となっている.

縦軸は内圧による繊維方向のひずみを示しており,

胴部においては 1 層目の Hoop 巻き層, 鏡部において は 2 層目の Helical 巻き層となっている. Fig.2 からオ リジナル容器では,内圧の上昇に伴って胴部中央近傍 のひずみが大きくなり,内圧 87.5MPa で 1 層目の Hoop 巻き層が CFRP の破断ひずみである 15700 μ に 達して破裂する結果となった.

Fig.2 Strain distribution of the original pressure.

5.2 グリッド容器

5.2.1 一体成形グリッド容器

ー体成形グリッド容器の最内層の繊維方向ひずみの 分布を Fig.3 に示す. Fig.3 より一体成形グリッド容器 では,内圧 114.0MPa で1層目の Hoop 巻き層が CFRP の破断ひずみである 15700μに達して破裂する結果と なり,オリジナル容器と比較して 30%破裂圧力が向 上する結果となった.

内圧 15MPa, 60MPa, 87.5MPa 時の一体成形グリッ ド容器とオリジナル容器の破壊層(最内層)の繊維方 向ひずみの比較を Fig.4 に示す. Fig.4 より一体成形グ リッド容器では,オリジナル容器と比較して内圧によ って生じる引張りひずみを低減させており,グリッド の補強効果が確認できる.オリジナル容器が内圧 87.5MPa で胴部最内層の繊維方向ひずみが 15700µに 達して破裂するのに対し,一体成形グリッド容器の胴 部最内層に発生するひずみは 11642µ以下となり,オ リジナル容器と比較してひずみを 35%低減させてい る.ドーム部については,グリッドが巻かれていない ため,繊維方向ひずみはオリジナル容器と一体成形グ リッド容器で概ね同じ値となっている.

5.2.2 挿入型アイソグリッド容器

挿入型グリッド容器では、内圧 112.3MPa で 1 層目 の Hoop 巻き層が破断ひずみに達し、破裂する結果と なった.一体成形グリッド容器と比較すると破裂圧力 は1.7MPa 低下するが、オリジナル容器と比較すると

Fig.3 Strain distribution of the grid pressure vessel by integral molding.

Fig.4 Strain distribution of both the original pressure vessel and the grid pressure vessel by integral molding.

破裂圧力は28%向上した.

オリジナル容器と挿入型,一体成形グリッド容器の 胴部最内層の内圧と繊維方向ひずみの関係を Fig.5 に 示す. Fig.5 から挿入型グリッド容器では、グリッド 円筒殻最内層と圧力容器本体が接触する 6MPa 近傍ま ではオリジナル容器と同様の傾きで推移し、それ以降 は一体型グリッドと同様の傾きでひずみが増加してい ることがわかる. Table 4 に挿入型グリッド容器のグ リッド円筒殻最内層と圧力容器本体の最外層間の距離 と破裂圧力の関係を示すが、両者の距離が大きくなる につれて破裂圧力が低下している. これは, 前述した ように両者の距離が大きくなるにつれて、グリッド効 果が出現しはじめる内圧が高圧側に移行するためであ る.しかし、グリッド円筒殻の最内層と圧力容器本体 の最外層間の距離を設けることで破裂圧力は一体型よ り低下するが、両者の距離を 0.1mm 以下に設定すれ ばその低下率も少なくてすむため, 成形性を考慮する と、FW 装置だけで圧力容器本体とグリッド円筒殻が

Table 4	Relation	of the	clearance	to	bust	pressure.
---------	----------	--------	-----------	----	------	-----------

Clearance	Burst pressure
(mm)	(MPa)
0	114.0
0.1	112.3
0.3	108.0
0.5	103.8

成形可能な挿入型の方が圧力容器を補強する方法としては適していると考えられる.

5.2.3 グリッド補強効果

構造の軽量化・低コスト化を考えると、より少ない 重量で高い破裂圧力になることが好ましい.そこで、 式(1)で定義するように、破裂圧力を質量で割った 単位質量あたりの受け持つ内圧を材料使用効率 η と して評価した.

$$\eta = \frac{E 力 容器の破裂圧力 (MPa)}{E 力 容器全体の質量 (kg)}$$
 (1)

Table 5 にその結果を示すが、オリジナル容器の η が 22.4 (MPa/kg) なのに対し、一体成形グリッド容 器では 24.8 (MPa/kg) ,挿入型グリッド容器では 24.4 (MPa/kg) となり、グリッド容器はオリジナル容 器と比較してより少ない質量で破裂圧力を向上させて いることがわかる.

Table :	5 M	aterial	effi	ciency
---------	-----	---------	------	--------

	B.P. ^{₩1}	Weight	η
	(MPa)	(kg)	(MPa/kg)
Original pressure vessel	87.5	3.9	22.4
Grid pressure vessel			
integral molding	113.6	4.6	24.7
insertional molding	109.0	4.6	23.7

1 B.P. = Burst Pressure

また、本解析で用いたグリッドの仕様(巻き角度幅, 高さ)は最適化されたものではないため、今後応答曲 面法等を用いて最適化することで、より一層効果を向 上させられると考えられる.

6.結 言

本研究では、グリッド構造の内圧特性を FEM 解析 で計算した結果、以下の結論が得られた.

1) 圧力容器の最外層を CFRP グリッドで補強する ことで,補強のない圧力容器に比べて破裂圧力が 28%以上向上した.

2)破裂圧力を質量で割った値 η を導入して計算し た結果,グリッド容器はオリジナル容器より高い値を 示し,グリッド容器が軽量かつ耐圧性能に優れた構造 であることが示された.

3) 製造方法を考慮した場合,圧力容器とグリッド を別々に成形し,最後にグリッドに圧力容器をはめ込 む挿入型が適していると考えられる.

4) グリッドの巻き角度,幅,高さを最適化することで,破裂圧力はより一層向上させられると考えられるが,これについては今後の課題としたい.

「参考文献」

- 平成 21 年度水素・燃料電池実証プロジェクト JHFC セミナー, NEDO (2010), 95-107.
- 坂田憲泰,太田浩, 邉吾一:強化プラスチック協 会,50,3 (2004),107-110.
- 3) 邊吾一,坂田憲泰,太田浩:日本機会学会論文集
 (A編),72,716 (2006),459-464.
- 坂田憲泰, 邊吾一, 豊田充洋:日本複合材料学会
 誌, 36, 2 (2010), 48-54.
- 5) 福島幸夫,清水隆三,梶浦健治,西俊明:H-IIA ロケットの機体構造について,日本航空宇宙学会 誌,46,535(1998),10-15.
- 7) 岸谷直美, 竿尾周太郎, 邉吾一: 第49回構造強度 に関する講演会講演集 (2007), 157-159.
- 容器保安規則関係例示基準集 新装版,高圧ガス 保安協会(2007),227-238.
- 9) 竹花立美:FRP 複合容器の設計と安全性評価に
 関する研究,博士論文(東京都立大学) (2000),
 49.
- 竹花立美:FRP 複合容器についての設計解析, 圧力技術, 37, 5 (1999), 299-306.