ハイブリッドSEA法による自動車の車室内音場解析

日大生産工(院)	○高橋	亜佑美	日大生産工(院)	中根	彰人
日大生産工(院)	橋上	聡	カリフォルニア州立大学	古株	慎一

1. はじめに

自動車の走行状態における高周波領域の振 動、騒音(ロードノイズやエンジンノイズ)を低 減させることは、自動車の商品性能の魅力を向 上する上で重要な項目の一つである。しかし、 近年の低公害、低燃費化に伴い、自動車の軽量 化と防音性能向上は相反するものである。さら に、自動車メーカーにとってこの両立を、短期 間でかつ低コストで実現しなければならない。 そのため、開発初期段階より車室内騒音をシミ ュレーションすることは開発効率の観点から 非常に重要である。

走行状態における高周波領域の振動騒音解 析手法として、統計的エネルギー解析手法 (Statistical Energy Analysis Method : SEA法)が一 般的に用いられている。しかし、自動車のよう な構造が複雑で、かつモード数が少ない構造物 に対して、SEA法は解析精度において課題があ った。

そこで本論では、SEA法の解析精度向上を目 的とした手法として、ハイブリッドSEA法を提 示し、実車の車室内音響解析に適用した。また この解析で求めた値と実測値を比較すること により、精度検証を行った。そしてさらに、こ の手法を用いて実走状態の寄与解析を行った ことについて報告を行う。

2. 解析手法

2.1 統計的エネルギー解析手法(SEA法)

本手法は、高周波領域の振動・音響系応答の 統計的平均推定法である。SEA法では、系の音 響と振動をともに物理系に共通なエネルギー、 パワーを用いて記述する。そして解析対象を複 数の要素に分割し、要素ごとの入力パワー、散 逸パワーおよび伝達パワーの平衡つりあい関 係から各要素の音響・振動エネルギー状態を表 す。ここでは各要素において、任意の周波数帯 域内では固有モードは一様に分布し、同程度に 励起されていると仮定している。したがって、 各要素はある周波数帯域内において複数の固 有モードが同程度励起されたエネルギー状態

日大生産工(院)	中根 彰人
カリフォルニア州立大学	古株 慎一
日大生産工	見坐地 一人

にあり、各要素内部での散逸パワーは要素のエ ネルギーレベルに比例し、伝達パワーは要素間 のエネルギーレベル差に比例するといった扱 いが可能になる。

ここで、2要素系で構成されるモデルを図1 に示す。要素の散逸パワーの比例定数 η_i を内 部損失率、要素間の伝達パワーの比例定数 η_{ii} を結合損失率と称し、式(1)、(2)であらわされ る。

$$P_{d1(d2)} = \omega \eta_{1(2)} E_{1(2)}$$
(1)

$$P_{12(21)} = \omega \eta_{12(21)} E_{1(2)}$$
(2)

したがってこの場合、2要素系のエネルギー のつりあいは、式(3)で表現できる。

$$\begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \omega \begin{pmatrix} \eta_1 + \eta_{12} & -\eta_{21} \\ -\eta_{12} & \eta_2 + \eta_{21} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} (3)$$

ここで、 P_i, P_{di} はそれぞれ要素iの外部入力パ ワー及び内部損失パワー、P_{ii}は要素iから要素 iへの伝達パワーである。

これらの連立方程式を解くことにより各要素 のエネルギー状態、伝達パワーなどを容易に求 めることができる。

2.2 SEAパラメータの求め方

SEA法で解析を行うには、SEAパラメータ(等 価質量、内部損失率、結合損失率)をいかに精 度よく求めるかが重要である。

Vehicle interior acoustic field analysis by hybrid SEA method Ayumi TAKAHASHI, Akihito NAKANE, Satoru HASHIGAMI, Shinichi KOKABU and Kazuhito MISAJI

(1)内部損失率の求め方

内部損失に関しては、式(4)のように各要素 の自由振動時における1/3オクターブバンド成 分波形ごとの対数減衰率を空間平均し内部損 失率 η_iを推定する。

$$\eta_i = \frac{A / \mathcal{V} / \kappa d \beta 空間周波数平均減衰率}{2.73 \times / \mathcal{V} / \kappa \rho \omega B 波数}$$
(4)

(2)等価質量の求め方

各要素のエネルギー E_i と等価質量 M_{eqi} の 関係は式(5)で表される。

$$E_i = M_{eai} \cdot \langle V_i^2 \rangle \tag{5}$$

すなわち等価質量とは、それにその要素の時間 空間平均速度の2乗< V_i^2 >を掛け合わせると要 素のエネルギー E_i になるもので、内部損失率 η_i を用いて式(6)で表される(r_i は初期減衰率)

$$M_{eqi} = \frac{P_i}{0.23r_i \cdot \langle V_i^2 \rangle}$$
(6)

(3)結合損失率の求め方

結合損失率を求める方法として、パワー注入 法がある。パワー注入法は、結合状態のままの 各要素に個別に既知のパワーを注入しそれぞ れの要素のエネルギー状態を計測する内部損 失率及び結合損失率を算出する方法である。こ の考え方を2要素系の例で説明する。

2要素系において要素1のみにパワー注入した場合の平衡式は式(7)となる。

$$\begin{pmatrix} P_1 \\ 0 \end{pmatrix} = \omega \begin{pmatrix} \eta_1 + \eta_{12} & -\eta_{21} \\ -\eta_{12} & \eta_2 + \eta_{21} \end{pmatrix} \begin{pmatrix} E_{11} \\ E_{21} \end{pmatrix}$$
(7)

次に要素2のみにパワーを注入した場合の平 衡式は式(8)となる。

$$\begin{pmatrix} 0 \\ P_1 \end{pmatrix} = \omega \begin{pmatrix} \eta_1 + \eta_{12} & -\eta_{21} \\ -\eta_{12} & \eta_2 + \eta_{21} \end{pmatrix} \begin{pmatrix} E_{21} \\ E_{22} \end{pmatrix}$$
(8)

これらをまとめると式(9)となる

$$\begin{pmatrix} P_1 \\ 0 \\ 0 \\ P_2 \end{pmatrix} = \omega \begin{pmatrix} E_{11} & E_{11} & -E_{21} & 0 \\ 0 & E_{11} & -E_{21} & -E_{21} \\ -E_{12} & -E_{12} & E_{22} & 0 \\ 0 & -E_{12} & E_{22} & E_{22} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_{12} \\ \eta_{21} \\ \eta_2 \end{pmatrix}$$
(9)

式(9)を連立方程式で解くことにより各要素 の損失率が求められる。この方法は各要素の内 部損失率と結合損失率が一括して同時に求め られるため非常に有効な方法に見えるが、実際 には各要素に対する平均入力パワー及び平均 エネルギーを実験的に、より精度よく求めない と各損失率、特に結合損失率が負になることが ある。

自動車のような複雑な構造を扱う本論におい ては、式(9)において測定誤差の生じやすい微小 項を無視し、支配的な項のみを考慮することに より得られた近似式(10)を用いる。これにより、 パワー注入に直接関係している2要素のエネル ギーレベルと、各要素の内部損失率のみから結 合損失率が求められる。

$$\eta_{ij} = \eta_j \frac{E_{ji}}{E_{ii}} \tag{10}$$

以上の方法により、SEAパラメータを求める ことができ、平衡つりあい式を立てることがで きる。これがSEA法である。

2.3 ハイブリッドSEA法

例えば、現行車両の各要素のエネルギー実測 値を *E(Base)*、理論的に求めた各要素のエネ ルギー理論値を *A(Base)*とする。つぎに現行 車両に取り付けているトリムを諸元変更した ときの各要素のエネルギー実測値を *E(Mod)*、 各要素のエネルギー理論値を *A(Mod)*とする。 理論値に対する実測値の比率から以下の関係 式が得られる。

$$\frac{A(Base)}{E(Base)} = \frac{A(Mod)}{E(Mod)}$$
(12)

式(12)から、以下の式が得られる。

$$E(Mod) = \frac{E(Base)}{A(Base)} \cdot A(Mod) \quad (13)$$

式(13)はトリムを諸元変更した A(Mod)に対 して、諸元変更前の実測値 E(Base)と理論値 A(Base)の比率をかけることで、より精度の 高い予測値 E(Mod)を求めることを意味する。 これがハイブリッドSEA法の基本的な考えで ある。

3. 解析結果

3.1 ハイブリッドSEA法の精度検証

本論は2.3で提示したハイブリッドSEA法の妥 当性を検証するために、一例として、フロアカ ーペットを取り付けた状態をBase(図2)、撤去し た状態をMod(図3)として、次の手順で検証を行 った。

(1) 実車状態での各部位に対して、車室内音の空 気伝播音の解析精度を検証するため、1Wのパワ ーでスピーカー加振を行い実測値と比較した。 図4は、エンジンルームから車室内音場への平均 音圧レベルを示し、また図5は、左前のホイール ハウスから車室内音場への平均音圧レベルを示 す。諸元変更前と後の理論値は実測値と比べ、 良い精度で求められていることが分かる。

図4. 平均音圧レベル(ENG Room→Cav Interior)

図5. 平均音圧レベル(FrWheelH -L→Cav Interior)

図6. 平均音圧レベルの差分 (FrWheelH -L→Cav Interior)

(ENG Room→Cav Interior)

(2) 実車状態での各部位に対して、車室内音場の固体伝播音の解析精度を検証するため、1Wのパワーでハンマー加振を行い実測値と比較した。図6は、左前のホイールハウスから車室内音場の、フロアカーペットの諸元変更前と後の平均音圧レベルの差分を示す。また図7は、エンジンルームから車室内音場の、フロアカーペットの諸元変更前と後の平均音圧レベルの差分を示す。諸元変更前と後の予測値は実測値と比べ、良い精度で求められていることが分かる。

次に、提示した解析手法で作成した解析モデルを用いて、寄与解析を行った。

3.2 本手法による寄与解析

3.1で示した検証結果より、本解析モデル を用いて、実車の実走状態におけるロード ノイズ、エンジンノイズを入力し、車室内 音場の出力寄与解析を行った。図8、図9は、 フロアカーペットを取り付けた状態と撤去 した状態で、それぞれ車速50[km/h]のロード ノイズを入力した場合の、車室内に面する 各部位からの出力寄与率を示す。図10、図 11は、フロアカーペットを取り付けた状態 と撤去した状態で、エンジンノイズを入力

図8. 部位毎の出力寄与率(Base) RN 50 km/h

図9. 部位毎の出力寄与率(Mod)RN 50 km/h

図10. 部位毎の出力寄与率(Base)EN

図11. 部位毎の出力寄与率(Mod) EN

した場合の、車室内に面する各部位からの 出力寄与率を示す。その結果、図8と図9並 びに図10と図11から、フロア部の高周波域 の出力寄与率が高くなっていることがわか る。これは、高周波域にとって、フロア部 におけるフロアカーペットの役割は重要で あることを示している。

4. 結論

本論はSEA法の解析精度向上を目的とし た手法として、ハイブリッドSEA法を提示し、 実車の実走状態での車室内騒音の予測値と 実測値を比較し検証した。さらにトリムの 諸元変更時(トリムの撤去前と撤去後)の寄 与解析を行った。その結果、提示した解析 手法の妥当性が検証できた。また実走状態 であるロードノイズ、エンジンノイズを入 力した場合の寄与解析を行うことができ、 フロアカーペットの重要性を検証できた。

今後は、これらの手法を用いた実車の音 響解析が期待できると考えられる。

参考文献

- 見坐地一人,斎藤寿信,来原裕司,山下剛: 統計的エネルギー解析手法(SEA)を用いた ロードノイズ解析,HONDA R&T Technical Review Vol.11 No.2(1999)
- 見坐地一人,多田寛子,山下剛:自動車の 高周波騒音解析のためのハイブリッド SEAモデル化技術,HONDA R&T Technical Review Vol.16 No.1(2004)
- Lyon, R.H. : Statistical Energy of Dynamical System, Theory and Applications, MIT Press (1975)
- N.Lalor, N. : Practical Consideration for the Measurement Structures, ISVR Technical Report No. 182(1990)
- Cimerman, B. : Overview of the Experimental Approach to Statistical Energy Analysis, SAE Paper97 1968
- 6. 鎌田,竹原,山崎:統計的エネルギー解析法の自動車振動予測への適用に関する基礎的検討(簡易構造物での検討),自動車技術会論文集,No.4,p.49-54
- Mark, J.m., et al. : Statistical Energy Analysis for Road Noise Simulation, SAE Paper 97 1971
- Dennis, W.: An Example of Statistical Energy Analysis(SEA) Application in Vehicle Sound Package Development, RIETER Conference 1999