5-70

人工膜融合系構築を目指したエンドソーム pH 応答性 コイルドコイルの設計とキャラクタリゼーション

日大生産工 〇柏田 歩・松田 清美 日大生産工(院) 坪井 茉奈 ベルリン自由大 Enrico Brandenburg・Beate Koksch

1. 緒言

ヒトゲノムの解読,そしてバイオインフォマ ティックス研究の進歩により,遺伝子研究が身 近になりつつある。そのような背景のもと,機 能が既知である遺伝子を標的細胞内に効率よく 投入する技術は今後の新しい医療・治療研究へ の貢献が期待される。

高効率な遺伝子送達のためには細胞外から細 胞内への物質輸送ルートであるエンドサイトー シス経路の利用が有効であると考えられる。こ のエンドサイトーシス経路を有効利用した遺伝 子送達の代表例としてインフルエンザウイルス の感染過程が挙げられる。エンドサイトーシス 経路により、エンドソームに移行したウイルス はエンドソーム内の酸性条件を引き金に、膜融 合を引き起こし, その遺伝情報を細胞質内へ移 行させる。この膜融合過程において重要な役割 を果たしているのが、ウイルス表層に存在する ヘマグルチニン (HA) である。HA は pH 応答 性タンパク質であり,酸性条件下で大きな構造 変化を引き起こす。この構造変化がエンドソー ム膜との選択的相互作用(分子認識),そして膜 融合のきっかけとなっている。

これまでわれわれは *in vitro* 系において, HA の簡易モデルとしての pH応答型 coiled coilポリ ペプチドによるリポソーム膜融合促進系の構築 を行ってきたが,明確な分子認識を駆動力とし たモデルではないため,標的膜に対する選択性 を考慮することができなかった¹⁾。一方,ボロン 酸誘導体担持リポソーム(担体リポソーム)を 利用することにより,細胞表面に広く存在する PI (環状 *cys*-diol 構造)を選択的に認識して進行 する膜融合系の構築にも成功している^{2,3)}。

そこで、ボロン酸誘導体による標的(PI)選 択性にエンドソーム pH 応答性付与することを 目的として、本研究ではエンドソーム環境での 鋭敏な構造変化を誘起する新規 coiled coil ポリ ペプチドの設計・合成を行う。そして,水溶液 中における種々のキャラクタリゼーションを通 じて, 膜融合デバイスとしての利用可能性につ いて評価を行う。

本研究で設計・合成したポリペプチドを用い て,生理条件における標的膜に対する認識,そ してエンドソーム条件での膜融合を連続的に実 践できれば,遺伝子導入技術新たな方法論提供 に貢献できると考えられる。

2. 実験

すべてのポリペプチドは Wang resin 上におけ る Fmoc 固相合成により得た。また,得られたポ リペプチドの水溶液中での構造変化については CD スペクトル測定により評価した。さらにポリ ペプチドの熱力学的安定性の評価として,尿素 添加による化学変性挙動ならびに熱変性挙動を CD スペクトル測定により追跡した。

3. 結果と考察

エンドソーム pH 応答型 coiled coil の設計

coiled coil 構造は水溶性の会合性タンパク質ユ ニットであり, 疎水場(a,d 位)に含まれる Leu, Ile 等の疎水性残基間の疎水性相互作用と helix 間界 面(e 位 e g 位)における静電相互作用などを駆動 力に, helix が左巻きに束なった構造を取る。こ れまでの研究により, a および d 位に Leu を配し た coiled coil は疎水場における Leucine Zipper 構 造形成を駆動力として 2 量体構造を形成するこ とが広く知られている。

本研究において設計・合成したポリペプチド のアミノ酸配列を Fig. 1 に示す。Fig. 1 に示した coiled coil ポリペプチドの設計は Leucine Zipper を利用した単純な逆平行型 2 量体形成を目指し たものである。AP-LZ(LL) は a,d(a',d')位に Leu 残基を配した基本モデルである。AP-LZ(LL) は 14 残基の coiled coil ドメインを Gly リンカーで 結合させたモデルで広い pH 領域で安定な分子

Design and Characterization of an Endosomal-pH-Responsive Coiled-Coil Using for Artificial Membrane Fusion System

> Ayumi KASHIWADA, Kiyomi MATSUDA, Mana TSUBOI, Enrico BRANDENBURG and Beate KOKSCH

内 coiled coil 構造を形成することが予想される。 一方, われわれは エンドソーム pH 応答型 coiled coil として, 疎水場に位置する a_7 位に Glu 残基, a'_5 位に His 残基をそれぞれ有する AP-LZ(EH5) を設計・合成した。Glu 残基は側鎖カルボキシ ル基の pKa 値 4.2 以上の pH で負電荷を有し, His 残基は側鎖アミノ基の pKa 値 6.0 以下の pH で正電荷を有する。それゆえにエンドソーム環 境である pH 5.0 付近においてのみ, Glu-His 残基 間 salt-bridge 形成による coiled coil 構造の安定化 が観測されることが予想される。

Fig. 1 (a) Amino acid sequences of anti-parallel coiled coil polypeptides used in this study. (b) Helical wheel representation of AP-LZ(EH5).

エンドソーム pH 応答性と安定性の評価

水溶液中におけるポリペプチドの構造変化は CD スペクトル測定により評価した。基本モデル である AP-LZ(LL)は生理 pH 条件(pH 7.4)から酸 性 pH (pH 4.0)までの広い pH 領域において典型 的な helix 構造に帰属される CD シグナル(208 お よび 222 nm の負の極大)を示した(Fig. 2(a))。一 方, AP-LZ(EH5) に関してはエンドソーム環境

Fig. 2 Circular dichroism spectra of AP-LZ(LL) (a) and AP-LZ(EH5) (b). Measurements were performed in 10 mM Tris-HCl buffer (pH 7.4) or 10 mM acetate buffer (pH 6.0, 5.0, and 4.0) containing 100 mM NaCl. The polypeptide concentrations were 100 μ M.

Table 1Stability of Designed Coiled CoilPolypeptides

Polypeptides	рН	∆G ⁰ (kcal/mol)
AP-LZ(LL)	7.0	10.14±0.14
AP-LZ(LL)	5.0	10.10 ± 0.08
AP-LZ(EH5)	5.0	9.90±0.15
GCN4-pl	7.0	10.6

に匹敵する pH 5.0 においてのみ, 典型的な helix 構造形成を示した(Fig. 2(b))。この結果は, エン ドソーム環境に匹敵する pH 5.0 において, 疎水 場での Glu-His 残基間 salt-bridge 形成が coiled coil 構造を安定化に寄与していることを示唆してい る。

形成した coiled coil 構造の安定性に関する知 見を得るために,尿素添加による化学変性およ び熱変性についても検討を行った(Table 1)。 AP-LZ(LL)においては pH にかかわらず,10 kcal (mol coiled coil unit)⁻¹程度の coiled coil 構造形成 自由エネルギー,そして55 °C程度の融解中点温 度が観測された。これらの値は安定な coiled coil 2 量体として知られている GCN4-pl と同程度で あった^{4,5)}。また,AP-LZ(EH5)に関しても pH 5.0 において AP-LZ(LL)と同程度の熱力学的安定性 が認められた。

4. 結言

以上の結果は AP-LZ(EH5)が膜融合デバイス として十分なエンドソーム pH 応答性と形成し た coiled coil の安定性を兼ね備えていることを 示している。今後,ボロン酸誘導体との複合化 により,新規な遺伝子送達系の構築に大いに貢 献できると考えられる。

5. 謝辞

本発表は平成20年度日本大学中期海外派遣研 究員としての研究成果に基づくものです。この 場を借りて,関係各位に感謝の意を表します。

6. 参考文献

- A. Kashiwada, K. Matsuda, T. Mizuno, T. Tanaka, *Chem. Eur. J.* 2008, *14*, 7343-7350.
- 2) A. Kashiwada, M. Tsuboi, K. Matsuda, *Chem. Commun.* 2009, 695-697.
- A. Kashiwada, M. Tsuboi, T. Mizuno, T. Nagasaki, K. Matsuda, *Soft Matter*, 2009 in press.
- K. J. Lumb, C. M. Carr, P. S. Kim, *Biochemistry* 1994, 33, 7361-7367.
- E. K. O'Shea, J. D. Klemm, P. S. Kim, T. Alber, Science 1991, 254, 539-544.